![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupickbi | Structured version Visualization version GIF version |
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
eupickbi | ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupicka 2628 | . . 3 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | |
2 | 1 | ex 411 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
3 | euex 2569 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
4 | exintr 1893 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
5 | 3, 4 | syl5com 31 | . 2 ⊢ (∃!𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
6 | 2, 5 | impbid 211 | 1 ⊢ (∃!𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 ∃wex 1779 ∃!weu 2560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-mo 2532 df-eu 2561 |
This theorem is referenced by: mopickr 37535 sbaniota 43496 |
Copyright terms: Public domain | W3C validator |