MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupicka Structured version   Visualization version   GIF version

Theorem eupicka 2722
Description: Version of eupick 2721 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 nfeu1 2675 . . 3 𝑥∃!𝑥𝜑
2 nfe1 2155 . . 3 𝑥𝑥(𝜑𝜓)
31, 2nfan 1901 . 2 𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 eupick 2721 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimi 2215 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536  wex 1781  ∃!weu 2654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2146  ax-11 2162  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655
This theorem is referenced by:  eupickbi  2724  frege124d  40406  sbiota1  41086
  Copyright terms: Public domain W3C validator