MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupicka Structured version   Visualization version   GIF version

Theorem eupicka 2637
Description: Version of eupick 2636 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 nfeu1 2589 . . 3 𝑥∃!𝑥𝜑
2 nfe1 2150 . . 3 𝑥𝑥(𝜑𝜓)
31, 2nfan 1905 . 2 𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 eupick 2636 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimi 2209 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1785  ∃!weu 2569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-mo 2541  df-eu 2570
This theorem is referenced by:  eupickbi  2639  frege124d  41322  sbiota1  42005
  Copyright terms: Public domain W3C validator