Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupicka | Structured version Visualization version GIF version |
Description: Version of eupick 2636 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
eupicka | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2589 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
2 | nfe1 2150 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
3 | 1, 2 | nfan 1905 | . 2 ⊢ Ⅎ𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) |
4 | eupick 2636 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | alrimi 2209 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1785 ∃!weu 2569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-10 2140 ax-11 2157 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-mo 2541 df-eu 2570 |
This theorem is referenced by: eupickbi 2639 frege124d 41322 sbiota1 42005 |
Copyright terms: Public domain | W3C validator |