| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupicka | Structured version Visualization version GIF version | ||
| Description: Version of eupick 2633 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| eupicka | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2588 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
| 3 | 1, 2 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) |
| 4 | eupick 2633 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | alrimi 2214 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: eupickbi 2636 frege124d 43752 sbiota1 44425 |
| Copyright terms: Public domain | W3C validator |