MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupicka Structured version   Visualization version   GIF version

Theorem eupicka 2632
Description: Version of eupick 2631 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 nfeu1 2586 . . 3 𝑥∃!𝑥𝜑
2 nfe1 2148 . . 3 𝑥𝑥(𝜑𝜓)
31, 2nfan 1897 . 2 𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 eupick 2631 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimi 2211 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1776  ∃!weu 2566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-mo 2538  df-eu 2567
This theorem is referenced by:  eupickbi  2634  frege124d  43751  sbiota1  44430
  Copyright terms: Public domain W3C validator