| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupicka | Structured version Visualization version GIF version | ||
| Description: Version of eupick 2628 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| eupicka | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2583 | . . 3 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 2 | nfe1 2153 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
| 3 | 1, 2 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) |
| 4 | eupick 2628 | . 2 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | alrimi 2216 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: eupickbi 2631 frege124d 43800 sbiota1 44473 |
| Copyright terms: Public domain | W3C validator |