Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem27 Structured version   Visualization version   GIF version

Theorem stoweidlem27 45948
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem27.1 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
stoweidlem27.2 (𝜑𝑄 ∈ V)
stoweidlem27.3 (𝜑𝑀 ∈ ℕ)
stoweidlem27.4 (𝜑𝑌 Fn ran 𝐺)
stoweidlem27.5 (𝜑 → ran 𝐺 ∈ V)
stoweidlem27.6 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
stoweidlem27.7 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
stoweidlem27.8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
stoweidlem27.9 𝑡𝜑
stoweidlem27.10 𝑤𝜑
stoweidlem27.11 𝑄
Assertion
Ref Expression
stoweidlem27 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Distinct variable groups:   ,𝑖,𝑡,𝑤,𝐹   ,𝑙,𝑌,𝑡,𝑤   𝑇,,𝑤   𝑖,𝑞,𝑡,𝐹   𝑖,𝐺   𝑖,𝑀,𝑞   𝑖,𝑋,𝑤   𝑖,𝑌,𝑞   𝜑,𝑖   𝑄,𝑙   𝜑,𝑙   𝐺,𝑙   𝑄,𝑞   𝑇,𝑞   𝑈,𝑞   𝑤,𝑀   𝑤,𝑄   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝑄(𝑡,,𝑖)   𝑇(𝑡,𝑖,𝑙)   𝑈(𝑡,,𝑖,𝑙)   𝐹(𝑙)   𝐺(𝑤,𝑡,,𝑞)   𝑀(𝑡,,𝑙)   𝑋(𝑡,,𝑞,𝑙)

Proof of Theorem stoweidlem27
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem27.4 . . . 4 (𝜑𝑌 Fn ran 𝐺)
2 stoweidlem27.5 . . . 4 (𝜑 → ran 𝐺 ∈ V)
3 fnex 7254 . . . 4 ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V)
41, 2, 3syl2anc 583 . . 3 (𝜑𝑌 ∈ V)
5 stoweidlem27.7 . . . . 5 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
6 f1ofn 6863 . . . . 5 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹 Fn (1...𝑀))
75, 6syl 17 . . . 4 (𝜑𝐹 Fn (1...𝑀))
8 ovex 7481 . . . 4 (1...𝑀) ∈ V
9 fnex 7254 . . . 4 ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 585 . . 3 (𝜑𝐹 ∈ V)
11 coexg 7969 . . 3 ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌𝐹) ∈ V)
124, 10, 11syl2anc 583 . 2 (𝜑 → (𝑌𝐹) ∈ V)
13 stoweidlem27.3 . . 3 (𝜑𝑀 ∈ ℕ)
14 f1of 6862 . . . . . 6 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺)
155, 14syl 17 . . . . 5 (𝜑𝐹:(1...𝑀)⟶ran 𝐺)
16 fnfco 6786 . . . . 5 ((𝑌 Fn ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌𝐹) Fn (1...𝑀))
171, 15, 16syl2anc 583 . . . 4 (𝜑 → (𝑌𝐹) Fn (1...𝑀))
18 rncoss 5998 . . . . 5 ran (𝑌𝐹) ⊆ ran 𝑌
19 fvelrnb 6982 . . . . . . . . . . 11 (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
201, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
2120biimpa 476 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘)
22 stoweidlem27.10 . . . . . . . . . . . . . 14 𝑤𝜑
23 stoweidlem27.1 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
24 nfmpt1 5274 . . . . . . . . . . . . . . . . 17 𝑤(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
2523, 24nfcxfr 2906 . . . . . . . . . . . . . . . 16 𝑤𝐺
2625nfrn 5977 . . . . . . . . . . . . . . 15 𝑤ran 𝐺
2726nfcri 2900 . . . . . . . . . . . . . 14 𝑤 𝑙 ∈ ran 𝐺
2822, 27nfan 1898 . . . . . . . . . . . . 13 𝑤(𝜑𝑙 ∈ ran 𝐺)
29 stoweidlem27.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
3029ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑙)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
3230, 31eleqtrd 2846 . . . . . . . . . . . . . . 15 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
33 nfcv 2908 . . . . . . . . . . . . . . . 16 (𝑌𝑙)
34 stoweidlem27.11 . . . . . . . . . . . . . . . 16 𝑄
35 nfv 1913 . . . . . . . . . . . . . . . 16 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}
36 fveq1 6919 . . . . . . . . . . . . . . . . . . 19 ( = (𝑌𝑙) → (𝑡) = ((𝑌𝑙)‘𝑡))
3736breq2d 5178 . . . . . . . . . . . . . . . . . 18 ( = (𝑌𝑙) → (0 < (𝑡) ↔ 0 < ((𝑌𝑙)‘𝑡)))
3837rabbidv 3451 . . . . . . . . . . . . . . . . 17 ( = (𝑌𝑙) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)})
3938eqeq2d 2751 . . . . . . . . . . . . . . . 16 ( = (𝑌𝑙) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4033, 34, 35, 39elrabf 3704 . . . . . . . . . . . . . . 15 ((𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4132, 40sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4241simpld 494 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑄)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺)
4423elrnmpt 5981 . . . . . . . . . . . . . . 15 (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4643, 45mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ran 𝐺) → ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4728, 42, 46r19.29af 3274 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
4847adantlr 714 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
49 eleq1 2832 . . . . . . . . . . 11 ((𝑌𝑙) = 𝑘 → ((𝑌𝑙) ∈ 𝑄𝑘𝑄))
5048, 49syl5ibcom 245 . . . . . . . . . 10 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌𝑙) = 𝑘𝑘𝑄))
5150reximdva 3174 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘𝑄))
5221, 51mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘𝑄)
53 idd 24 . . . . . . . . . 10 (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄))
5453a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄)))
5554rexlimdv 3159 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘𝑄𝑘𝑄))
5652, 55mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ran 𝑌) → 𝑘𝑄)
5756ex 412 . . . . . 6 (𝜑 → (𝑘 ∈ ran 𝑌𝑘𝑄))
5857ssrdv 4014 . . . . 5 (𝜑 → ran 𝑌𝑄)
5918, 58sstrid 4020 . . . 4 (𝜑 → ran (𝑌𝐹) ⊆ 𝑄)
60 df-f 6577 . . . 4 ((𝑌𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌𝐹) Fn (1...𝑀) ∧ ran (𝑌𝐹) ⊆ 𝑄))
6117, 59, 60sylanbrc 582 . . 3 (𝜑 → (𝑌𝐹):(1...𝑀)⟶𝑄)
62 stoweidlem27.9 . . . 4 𝑡𝜑
63 nfv 1913 . . . . . . 7 𝑤 𝑡 ∈ (𝑇𝑈)
6422, 63nfan 1898 . . . . . 6 𝑤(𝜑𝑡 ∈ (𝑇𝑈))
65 nfv 1913 . . . . . 6 𝑤𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)
66 stoweidlem27.8 . . . . . . . 8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
6766sselda 4008 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡 𝑋)
68 eluni 4934 . . . . . . 7 (𝑡 𝑋 ↔ ∃𝑤(𝑡𝑤𝑤𝑋))
6967, 68sylib 218 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑤(𝑡𝑤𝑤𝑋))
7023funmpt2 6617 . . . . . . . . . . . 12 Fun 𝐺
7123dmeqi 5929 . . . . . . . . . . . . . . 15 dom 𝐺 = dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
72 stoweidlem27.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ∈ V)
7334rabexgf 44924 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ V → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7675ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤𝑋 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V))
7722, 76ralrimi 3263 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
78 dmmptg 6273 . . . . . . . . . . . . . . . 16 (∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
8071, 79eqtrid 2792 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑋)
8180eleq2d 2830 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ dom 𝐺𝑤𝑋))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑤𝑋) → 𝑤 ∈ dom 𝐺)
83 fvelrn 7110 . . . . . . . . . . . 12 ((Fun 𝐺𝑤 ∈ dom 𝐺) → (𝐺𝑤) ∈ ran 𝐺)
8470, 82, 83sylancr 586 . . . . . . . . . . 11 ((𝜑𝑤𝑋) → (𝐺𝑤) ∈ ran 𝐺)
8584adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (𝐺𝑤) ∈ ran 𝐺)
8615ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺)
87 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝑖 ∈ (1...𝑀))
88 fvco3 7021 . . . . . . . . . . . . . 14 ((𝐹:(1...𝑀)⟶ran 𝐺𝑖 ∈ (1...𝑀)) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
8986, 87, 88syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
90 fveq2 6920 . . . . . . . . . . . . . 14 ((𝐹𝑖) = (𝐺𝑤) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9190ad2antll 728 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9289, 91eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐺𝑤)))
93 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺𝑤) ∈ ran 𝐺))
9493anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝜑𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺)))
95 eleq2 2833 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌𝑙) ∈ (𝐺𝑤)))
96 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝐺𝑤) → (𝑌𝑙) = (𝑌‘(𝐺𝑤)))
9796eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ (𝐺𝑤) ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9895, 97bitrd 279 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9994, 98imbi12d 344 . . . . . . . . . . . . . . 15 (𝑙 = (𝐺𝑤) → (((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))))
10099, 29vtoclg 3566 . . . . . . . . . . . . . 14 ((𝐺𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
101100anabsi7 670 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
102101adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
10392, 102eqeltrd 2844 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
104 f1ofo 6869 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)–onto→ran 𝐺)
105 forn 6837 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺)
1065, 104, 1053syl 18 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 = ran 𝐺)
107106eleq2d 2830 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑤) ∈ ran 𝐹 ↔ (𝐺𝑤) ∈ ran 𝐺))
108107biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝐺𝑤) ∈ ran 𝐹)
1097adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀))
110 fvelrnb 6982 . . . . . . . . . . . . 13 (𝐹 Fn (1...𝑀) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
111109, 110syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
112108, 111mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤))
113103, 112reximddv 3177 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
11485, 113syldan 590 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
115 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤𝑋) → 𝑤𝑋)
11723fvmpt2 7040 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ∧ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
118116, 75, 117syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑋) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
119118eleq2d 2830 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) ↔ ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
120119biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑋) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
121120adantlrl 719 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
122 nfcv 2908 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹)‘𝑖)
123 nfv 1913 . . . . . . . . . . . . . . . . 17 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}
124 fveq1 6919 . . . . . . . . . . . . . . . . . . . 20 ( = ((𝑌𝐹)‘𝑖) → (𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
125124breq2d 5178 . . . . . . . . . . . . . . . . . . 19 ( = ((𝑌𝐹)‘𝑖) → (0 < (𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
126125rabbidv 3451 . . . . . . . . . . . . . . . . . 18 ( = ((𝑌𝐹)‘𝑖) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
127126eqeq2d 2751 . . . . . . . . . . . . . . . . 17 ( = ((𝑌𝐹)‘𝑖) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
128122, 34, 123, 127elrabf 3704 . . . . . . . . . . . . . . . 16 (((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
129121, 128sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
130129simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
131115, 130eleqtrd 2846 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
132 rabid 3465 . . . . . . . . . . . . 13 (𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)} ↔ (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
133131, 132sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
134133simprd 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡))
135134ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
136135reximdv 3176 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
137114, 136mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
138137ex 412 . . . . . . 7 (𝜑 → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
139138adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14064, 65, 69, 139exlimimdd 2220 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
141140ex 412 . . . 4 (𝜑 → (𝑡 ∈ (𝑇𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14262, 141ralrimi 3263 . . 3 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
14313, 61, 142jca32 515 . 2 (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
144 feq1 6728 . . . . 5 (𝑞 = (𝑌𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌𝐹):(1...𝑀)⟶𝑄))
145 fveq1 6919 . . . . . . . . 9 (𝑞 = (𝑌𝐹) → (𝑞𝑖) = ((𝑌𝐹)‘𝑖))
146145fveq1d 6922 . . . . . . . 8 (𝑞 = (𝑌𝐹) → ((𝑞𝑖)‘𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
147146breq2d 5178 . . . . . . 7 (𝑞 = (𝑌𝐹) → (0 < ((𝑞𝑖)‘𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
148147rexbidv 3185 . . . . . 6 (𝑞 = (𝑌𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
149148ralbidv 3184 . . . . 5 (𝑞 = (𝑌𝐹) → (∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
150144, 149anbi12d 631 . . . 4 (𝑞 = (𝑌𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)) ↔ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
151150anbi2d 629 . . 3 (𝑞 = (𝑌𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))))
152151spcegv 3610 . 2 ((𝑌𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)))))
15312, 143, 152sylc 65 1 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976   cuni 4931   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   < clt 11324  cn 12293  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451
This theorem is referenced by:  stoweidlem35  45956
  Copyright terms: Public domain W3C validator