Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem27 Structured version   Visualization version   GIF version

Theorem stoweidlem27 46056
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem27.1 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
stoweidlem27.2 (𝜑𝑄 ∈ V)
stoweidlem27.3 (𝜑𝑀 ∈ ℕ)
stoweidlem27.4 (𝜑𝑌 Fn ran 𝐺)
stoweidlem27.5 (𝜑 → ran 𝐺 ∈ V)
stoweidlem27.6 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
stoweidlem27.7 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
stoweidlem27.8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
stoweidlem27.9 𝑡𝜑
stoweidlem27.10 𝑤𝜑
stoweidlem27.11 𝑄
Assertion
Ref Expression
stoweidlem27 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Distinct variable groups:   ,𝑖,𝑡,𝑤,𝐹   ,𝑙,𝑌,𝑡,𝑤   𝑇,,𝑤   𝑖,𝑞,𝑡,𝐹   𝑖,𝐺   𝑖,𝑀,𝑞   𝑖,𝑋,𝑤   𝑖,𝑌,𝑞   𝜑,𝑖   𝑄,𝑙   𝜑,𝑙   𝐺,𝑙   𝑄,𝑞   𝑇,𝑞   𝑈,𝑞   𝑤,𝑀   𝑤,𝑄   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝑄(𝑡,,𝑖)   𝑇(𝑡,𝑖,𝑙)   𝑈(𝑡,,𝑖,𝑙)   𝐹(𝑙)   𝐺(𝑤,𝑡,,𝑞)   𝑀(𝑡,,𝑙)   𝑋(𝑡,,𝑞,𝑙)

Proof of Theorem stoweidlem27
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem27.4 . . . 4 (𝜑𝑌 Fn ran 𝐺)
2 stoweidlem27.5 . . . 4 (𝜑 → ran 𝐺 ∈ V)
3 fnex 7209 . . . 4 ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V)
41, 2, 3syl2anc 584 . . 3 (𝜑𝑌 ∈ V)
5 stoweidlem27.7 . . . . 5 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
6 f1ofn 6819 . . . . 5 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹 Fn (1...𝑀))
75, 6syl 17 . . . 4 (𝜑𝐹 Fn (1...𝑀))
8 ovex 7438 . . . 4 (1...𝑀) ∈ V
9 fnex 7209 . . . 4 ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 586 . . 3 (𝜑𝐹 ∈ V)
11 coexg 7925 . . 3 ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌𝐹) ∈ V)
124, 10, 11syl2anc 584 . 2 (𝜑 → (𝑌𝐹) ∈ V)
13 stoweidlem27.3 . . 3 (𝜑𝑀 ∈ ℕ)
14 f1of 6818 . . . . . 6 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺)
155, 14syl 17 . . . . 5 (𝜑𝐹:(1...𝑀)⟶ran 𝐺)
16 fnfco 6743 . . . . 5 ((𝑌 Fn ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌𝐹) Fn (1...𝑀))
171, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑌𝐹) Fn (1...𝑀))
18 rncoss 5955 . . . . 5 ran (𝑌𝐹) ⊆ ran 𝑌
19 fvelrnb 6939 . . . . . . . . . . 11 (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
201, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
2120biimpa 476 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘)
22 stoweidlem27.10 . . . . . . . . . . . . . 14 𝑤𝜑
23 stoweidlem27.1 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
24 nfmpt1 5220 . . . . . . . . . . . . . . . . 17 𝑤(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
2523, 24nfcxfr 2896 . . . . . . . . . . . . . . . 16 𝑤𝐺
2625nfrn 5932 . . . . . . . . . . . . . . 15 𝑤ran 𝐺
2726nfcri 2890 . . . . . . . . . . . . . 14 𝑤 𝑙 ∈ ran 𝐺
2822, 27nfan 1899 . . . . . . . . . . . . 13 𝑤(𝜑𝑙 ∈ ran 𝐺)
29 stoweidlem27.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
3029ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑙)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
3230, 31eleqtrd 2836 . . . . . . . . . . . . . . 15 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
33 nfcv 2898 . . . . . . . . . . . . . . . 16 (𝑌𝑙)
34 stoweidlem27.11 . . . . . . . . . . . . . . . 16 𝑄
35 nfv 1914 . . . . . . . . . . . . . . . 16 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}
36 fveq1 6875 . . . . . . . . . . . . . . . . . . 19 ( = (𝑌𝑙) → (𝑡) = ((𝑌𝑙)‘𝑡))
3736breq2d 5131 . . . . . . . . . . . . . . . . . 18 ( = (𝑌𝑙) → (0 < (𝑡) ↔ 0 < ((𝑌𝑙)‘𝑡)))
3837rabbidv 3423 . . . . . . . . . . . . . . . . 17 ( = (𝑌𝑙) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)})
3938eqeq2d 2746 . . . . . . . . . . . . . . . 16 ( = (𝑌𝑙) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4033, 34, 35, 39elrabf 3667 . . . . . . . . . . . . . . 15 ((𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4132, 40sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4241simpld 494 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑄)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺)
4423elrnmpt 5938 . . . . . . . . . . . . . . 15 (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4643, 45mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ran 𝐺) → ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4728, 42, 46r19.29af 3251 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
4847adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
49 eleq1 2822 . . . . . . . . . . 11 ((𝑌𝑙) = 𝑘 → ((𝑌𝑙) ∈ 𝑄𝑘𝑄))
5048, 49syl5ibcom 245 . . . . . . . . . 10 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌𝑙) = 𝑘𝑘𝑄))
5150reximdva 3153 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘𝑄))
5221, 51mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘𝑄)
53 idd 24 . . . . . . . . . 10 (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄))
5453a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄)))
5554rexlimdv 3139 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘𝑄𝑘𝑄))
5652, 55mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ran 𝑌) → 𝑘𝑄)
5756ex 412 . . . . . 6 (𝜑 → (𝑘 ∈ ran 𝑌𝑘𝑄))
5857ssrdv 3964 . . . . 5 (𝜑 → ran 𝑌𝑄)
5918, 58sstrid 3970 . . . 4 (𝜑 → ran (𝑌𝐹) ⊆ 𝑄)
60 df-f 6535 . . . 4 ((𝑌𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌𝐹) Fn (1...𝑀) ∧ ran (𝑌𝐹) ⊆ 𝑄))
6117, 59, 60sylanbrc 583 . . 3 (𝜑 → (𝑌𝐹):(1...𝑀)⟶𝑄)
62 stoweidlem27.9 . . . 4 𝑡𝜑
63 nfv 1914 . . . . . . 7 𝑤 𝑡 ∈ (𝑇𝑈)
6422, 63nfan 1899 . . . . . 6 𝑤(𝜑𝑡 ∈ (𝑇𝑈))
65 nfv 1914 . . . . . 6 𝑤𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)
66 stoweidlem27.8 . . . . . . . 8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
6766sselda 3958 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡 𝑋)
68 eluni 4886 . . . . . . 7 (𝑡 𝑋 ↔ ∃𝑤(𝑡𝑤𝑤𝑋))
6967, 68sylib 218 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑤(𝑡𝑤𝑤𝑋))
7023funmpt2 6575 . . . . . . . . . . . 12 Fun 𝐺
7123dmeqi 5884 . . . . . . . . . . . . . . 15 dom 𝐺 = dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
72 stoweidlem27.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ∈ V)
7334rabexgf 45048 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ V → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7675ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤𝑋 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V))
7722, 76ralrimi 3240 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
78 dmmptg 6231 . . . . . . . . . . . . . . . 16 (∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
8071, 79eqtrid 2782 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑋)
8180eleq2d 2820 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ dom 𝐺𝑤𝑋))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑤𝑋) → 𝑤 ∈ dom 𝐺)
83 fvelrn 7066 . . . . . . . . . . . 12 ((Fun 𝐺𝑤 ∈ dom 𝐺) → (𝐺𝑤) ∈ ran 𝐺)
8470, 82, 83sylancr 587 . . . . . . . . . . 11 ((𝜑𝑤𝑋) → (𝐺𝑤) ∈ ran 𝐺)
8584adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (𝐺𝑤) ∈ ran 𝐺)
8615ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺)
87 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝑖 ∈ (1...𝑀))
88 fvco3 6978 . . . . . . . . . . . . . 14 ((𝐹:(1...𝑀)⟶ran 𝐺𝑖 ∈ (1...𝑀)) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
8986, 87, 88syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
90 fveq2 6876 . . . . . . . . . . . . . 14 ((𝐹𝑖) = (𝐺𝑤) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9190ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9289, 91eqtrd 2770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐺𝑤)))
93 eleq1 2822 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺𝑤) ∈ ran 𝐺))
9493anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝜑𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺)))
95 eleq2 2823 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌𝑙) ∈ (𝐺𝑤)))
96 fveq2 6876 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝐺𝑤) → (𝑌𝑙) = (𝑌‘(𝐺𝑤)))
9796eleq1d 2819 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ (𝐺𝑤) ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9895, 97bitrd 279 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9994, 98imbi12d 344 . . . . . . . . . . . . . . 15 (𝑙 = (𝐺𝑤) → (((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))))
10099, 29vtoclg 3533 . . . . . . . . . . . . . 14 ((𝐺𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
101100anabsi7 671 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
102101adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
10392, 102eqeltrd 2834 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
104 f1ofo 6825 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)–onto→ran 𝐺)
105 forn 6793 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺)
1065, 104, 1053syl 18 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 = ran 𝐺)
107106eleq2d 2820 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑤) ∈ ran 𝐹 ↔ (𝐺𝑤) ∈ ran 𝐺))
108107biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝐺𝑤) ∈ ran 𝐹)
1097adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀))
110 fvelrnb 6939 . . . . . . . . . . . . 13 (𝐹 Fn (1...𝑀) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
111109, 110syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
112108, 111mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤))
113103, 112reximddv 3156 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
11485, 113syldan 591 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
115 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤𝑋) → 𝑤𝑋)
11723fvmpt2 6997 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ∧ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
118116, 75, 117syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑋) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
119118eleq2d 2820 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) ↔ ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
120119biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑋) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
121120adantlrl 720 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
122 nfcv 2898 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹)‘𝑖)
123 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}
124 fveq1 6875 . . . . . . . . . . . . . . . . . . . 20 ( = ((𝑌𝐹)‘𝑖) → (𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
125124breq2d 5131 . . . . . . . . . . . . . . . . . . 19 ( = ((𝑌𝐹)‘𝑖) → (0 < (𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
126125rabbidv 3423 . . . . . . . . . . . . . . . . . 18 ( = ((𝑌𝐹)‘𝑖) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
127126eqeq2d 2746 . . . . . . . . . . . . . . . . 17 ( = ((𝑌𝐹)‘𝑖) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
128122, 34, 123, 127elrabf 3667 . . . . . . . . . . . . . . . 16 (((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
129121, 128sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
130129simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
131115, 130eleqtrd 2836 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
132 rabid 3437 . . . . . . . . . . . . 13 (𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)} ↔ (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
133131, 132sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
134133simprd 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡))
135134ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
136135reximdv 3155 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
137114, 136mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
138137ex 412 . . . . . . 7 (𝜑 → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
139138adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14064, 65, 69, 139exlimimdd 2219 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
141140ex 412 . . . 4 (𝜑 → (𝑡 ∈ (𝑇𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14262, 141ralrimi 3240 . . 3 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
14313, 61, 142jca32 515 . 2 (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
144 feq1 6686 . . . . 5 (𝑞 = (𝑌𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌𝐹):(1...𝑀)⟶𝑄))
145 fveq1 6875 . . . . . . . . 9 (𝑞 = (𝑌𝐹) → (𝑞𝑖) = ((𝑌𝐹)‘𝑖))
146145fveq1d 6878 . . . . . . . 8 (𝑞 = (𝑌𝐹) → ((𝑞𝑖)‘𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
147146breq2d 5131 . . . . . . 7 (𝑞 = (𝑌𝐹) → (0 < ((𝑞𝑖)‘𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
148147rexbidv 3164 . . . . . 6 (𝑞 = (𝑌𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
149148ralbidv 3163 . . . . 5 (𝑞 = (𝑌𝐹) → (∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
150144, 149anbi12d 632 . . . 4 (𝑞 = (𝑌𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)) ↔ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
151150anbi2d 630 . . 3 (𝑞 = (𝑌𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))))
152151spcegv 3576 . 2 ((𝑌𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)))))
15312, 143, 152sylc 65 1 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2108  wnfc 2883  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  wss 3926   cuni 4883   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cn 12240  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408
This theorem is referenced by:  stoweidlem35  46064
  Copyright terms: Public domain W3C validator