Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem27 Structured version   Visualization version   GIF version

Theorem stoweidlem27 43458
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem27.1 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
stoweidlem27.2 (𝜑𝑄 ∈ V)
stoweidlem27.3 (𝜑𝑀 ∈ ℕ)
stoweidlem27.4 (𝜑𝑌 Fn ran 𝐺)
stoweidlem27.5 (𝜑 → ran 𝐺 ∈ V)
stoweidlem27.6 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
stoweidlem27.7 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
stoweidlem27.8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
stoweidlem27.9 𝑡𝜑
stoweidlem27.10 𝑤𝜑
stoweidlem27.11 𝑄
Assertion
Ref Expression
stoweidlem27 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Distinct variable groups:   ,𝑖,𝑡,𝑤,𝐹   ,𝑙,𝑌,𝑡,𝑤   𝑇,,𝑤   𝑖,𝑞,𝑡,𝐹   𝑖,𝐺   𝑖,𝑀,𝑞   𝑖,𝑋,𝑤   𝑖,𝑌,𝑞   𝜑,𝑖   𝑄,𝑙   𝜑,𝑙   𝐺,𝑙   𝑄,𝑞   𝑇,𝑞   𝑈,𝑞   𝑤,𝑀   𝑤,𝑄   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝑄(𝑡,,𝑖)   𝑇(𝑡,𝑖,𝑙)   𝑈(𝑡,,𝑖,𝑙)   𝐹(𝑙)   𝐺(𝑤,𝑡,,𝑞)   𝑀(𝑡,,𝑙)   𝑋(𝑡,,𝑞,𝑙)

Proof of Theorem stoweidlem27
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem27.4 . . . 4 (𝜑𝑌 Fn ran 𝐺)
2 stoweidlem27.5 . . . 4 (𝜑 → ran 𝐺 ∈ V)
3 fnex 7075 . . . 4 ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V)
41, 2, 3syl2anc 583 . . 3 (𝜑𝑌 ∈ V)
5 stoweidlem27.7 . . . . 5 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
6 f1ofn 6701 . . . . 5 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹 Fn (1...𝑀))
75, 6syl 17 . . . 4 (𝜑𝐹 Fn (1...𝑀))
8 ovex 7288 . . . 4 (1...𝑀) ∈ V
9 fnex 7075 . . . 4 ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 585 . . 3 (𝜑𝐹 ∈ V)
11 coexg 7750 . . 3 ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌𝐹) ∈ V)
124, 10, 11syl2anc 583 . 2 (𝜑 → (𝑌𝐹) ∈ V)
13 stoweidlem27.3 . . 3 (𝜑𝑀 ∈ ℕ)
14 f1of 6700 . . . . . 6 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺)
155, 14syl 17 . . . . 5 (𝜑𝐹:(1...𝑀)⟶ran 𝐺)
16 fnfco 6623 . . . . 5 ((𝑌 Fn ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌𝐹) Fn (1...𝑀))
171, 15, 16syl2anc 583 . . . 4 (𝜑 → (𝑌𝐹) Fn (1...𝑀))
18 rncoss 5870 . . . . 5 ran (𝑌𝐹) ⊆ ran 𝑌
19 fvelrnb 6812 . . . . . . . . . . 11 (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
201, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
2120biimpa 476 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘)
22 stoweidlem27.10 . . . . . . . . . . . . . 14 𝑤𝜑
23 stoweidlem27.1 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
24 nfmpt1 5178 . . . . . . . . . . . . . . . . 17 𝑤(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
2523, 24nfcxfr 2904 . . . . . . . . . . . . . . . 16 𝑤𝐺
2625nfrn 5850 . . . . . . . . . . . . . . 15 𝑤ran 𝐺
2726nfcri 2893 . . . . . . . . . . . . . 14 𝑤 𝑙 ∈ ran 𝐺
2822, 27nfan 1903 . . . . . . . . . . . . 13 𝑤(𝜑𝑙 ∈ ran 𝐺)
29 stoweidlem27.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
3029ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑙)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
3230, 31eleqtrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
33 nfcv 2906 . . . . . . . . . . . . . . . 16 (𝑌𝑙)
34 stoweidlem27.11 . . . . . . . . . . . . . . . 16 𝑄
35 nfv 1918 . . . . . . . . . . . . . . . 16 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}
36 fveq1 6755 . . . . . . . . . . . . . . . . . . 19 ( = (𝑌𝑙) → (𝑡) = ((𝑌𝑙)‘𝑡))
3736breq2d 5082 . . . . . . . . . . . . . . . . . 18 ( = (𝑌𝑙) → (0 < (𝑡) ↔ 0 < ((𝑌𝑙)‘𝑡)))
3837rabbidv 3404 . . . . . . . . . . . . . . . . 17 ( = (𝑌𝑙) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)})
3938eqeq2d 2749 . . . . . . . . . . . . . . . 16 ( = (𝑌𝑙) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4033, 34, 35, 39elrabf 3613 . . . . . . . . . . . . . . 15 ((𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4132, 40sylib 217 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4241simpld 494 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑄)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺)
4423elrnmpt 5854 . . . . . . . . . . . . . . 15 (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4643, 45mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ran 𝐺) → ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4728, 42, 46r19.29af 3259 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
4847adantlr 711 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
49 eleq1 2826 . . . . . . . . . . 11 ((𝑌𝑙) = 𝑘 → ((𝑌𝑙) ∈ 𝑄𝑘𝑄))
5048, 49syl5ibcom 244 . . . . . . . . . 10 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌𝑙) = 𝑘𝑘𝑄))
5150reximdva 3202 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘𝑄))
5221, 51mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘𝑄)
53 idd 24 . . . . . . . . . 10 (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄))
5453a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄)))
5554rexlimdv 3211 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘𝑄𝑘𝑄))
5652, 55mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ran 𝑌) → 𝑘𝑄)
5756ex 412 . . . . . 6 (𝜑 → (𝑘 ∈ ran 𝑌𝑘𝑄))
5857ssrdv 3923 . . . . 5 (𝜑 → ran 𝑌𝑄)
5918, 58sstrid 3928 . . . 4 (𝜑 → ran (𝑌𝐹) ⊆ 𝑄)
60 df-f 6422 . . . 4 ((𝑌𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌𝐹) Fn (1...𝑀) ∧ ran (𝑌𝐹) ⊆ 𝑄))
6117, 59, 60sylanbrc 582 . . 3 (𝜑 → (𝑌𝐹):(1...𝑀)⟶𝑄)
62 stoweidlem27.9 . . . 4 𝑡𝜑
63 nfv 1918 . . . . . . 7 𝑤 𝑡 ∈ (𝑇𝑈)
6422, 63nfan 1903 . . . . . 6 𝑤(𝜑𝑡 ∈ (𝑇𝑈))
65 nfv 1918 . . . . . 6 𝑤𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)
66 stoweidlem27.8 . . . . . . . 8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
6766sselda 3917 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡 𝑋)
68 eluni 4839 . . . . . . 7 (𝑡 𝑋 ↔ ∃𝑤(𝑡𝑤𝑤𝑋))
6967, 68sylib 217 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑤(𝑡𝑤𝑤𝑋))
7023funmpt2 6457 . . . . . . . . . . . 12 Fun 𝐺
7123dmeqi 5802 . . . . . . . . . . . . . . 15 dom 𝐺 = dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
72 stoweidlem27.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ∈ V)
7334rabexgf 42456 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ V → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7675ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤𝑋 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V))
7722, 76ralrimi 3139 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
78 dmmptg 6134 . . . . . . . . . . . . . . . 16 (∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
8071, 79syl5eq 2791 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑋)
8180eleq2d 2824 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ dom 𝐺𝑤𝑋))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑤𝑋) → 𝑤 ∈ dom 𝐺)
83 fvelrn 6936 . . . . . . . . . . . 12 ((Fun 𝐺𝑤 ∈ dom 𝐺) → (𝐺𝑤) ∈ ran 𝐺)
8470, 82, 83sylancr 586 . . . . . . . . . . 11 ((𝜑𝑤𝑋) → (𝐺𝑤) ∈ ran 𝐺)
8584adantrl 712 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (𝐺𝑤) ∈ ran 𝐺)
8615ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺)
87 simprl 767 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝑖 ∈ (1...𝑀))
88 fvco3 6849 . . . . . . . . . . . . . 14 ((𝐹:(1...𝑀)⟶ran 𝐺𝑖 ∈ (1...𝑀)) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
8986, 87, 88syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
90 fveq2 6756 . . . . . . . . . . . . . 14 ((𝐹𝑖) = (𝐺𝑤) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9190ad2antll 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9289, 91eqtrd 2778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐺𝑤)))
93 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺𝑤) ∈ ran 𝐺))
9493anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝜑𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺)))
95 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌𝑙) ∈ (𝐺𝑤)))
96 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝐺𝑤) → (𝑌𝑙) = (𝑌‘(𝐺𝑤)))
9796eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ (𝐺𝑤) ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9895, 97bitrd 278 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9994, 98imbi12d 344 . . . . . . . . . . . . . . 15 (𝑙 = (𝐺𝑤) → (((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))))
10099, 29vtoclg 3495 . . . . . . . . . . . . . 14 ((𝐺𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
101100anabsi7 667 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
102101adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
10392, 102eqeltrd 2839 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
104 f1ofo 6707 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)–onto→ran 𝐺)
105 forn 6675 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺)
1065, 104, 1053syl 18 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 = ran 𝐺)
107106eleq2d 2824 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑤) ∈ ran 𝐹 ↔ (𝐺𝑤) ∈ ran 𝐺))
108107biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝐺𝑤) ∈ ran 𝐹)
1097adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀))
110 fvelrnb 6812 . . . . . . . . . . . . 13 (𝐹 Fn (1...𝑀) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
111109, 110syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
112108, 111mpbid 231 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤))
113103, 112reximddv 3203 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
11485, 113syldan 590 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
115 simplrl 773 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤𝑋) → 𝑤𝑋)
11723fvmpt2 6868 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ∧ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
118116, 75, 117syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑋) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
119118eleq2d 2824 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) ↔ ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
120119biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑋) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
121120adantlrl 716 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
122 nfcv 2906 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹)‘𝑖)
123 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}
124 fveq1 6755 . . . . . . . . . . . . . . . . . . . 20 ( = ((𝑌𝐹)‘𝑖) → (𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
125124breq2d 5082 . . . . . . . . . . . . . . . . . . 19 ( = ((𝑌𝐹)‘𝑖) → (0 < (𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
126125rabbidv 3404 . . . . . . . . . . . . . . . . . 18 ( = ((𝑌𝐹)‘𝑖) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
127126eqeq2d 2749 . . . . . . . . . . . . . . . . 17 ( = ((𝑌𝐹)‘𝑖) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
128122, 34, 123, 127elrabf 3613 . . . . . . . . . . . . . . . 16 (((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
129121, 128sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
130129simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
131115, 130eleqtrd 2841 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
132 rabid 3304 . . . . . . . . . . . . 13 (𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)} ↔ (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
133131, 132sylib 217 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
134133simprd 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡))
135134ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
136135reximdv 3201 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
137114, 136mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
138137ex 412 . . . . . . 7 (𝜑 → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
139138adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14064, 65, 69, 139exlimimdd 2215 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
141140ex 412 . . . 4 (𝜑 → (𝑡 ∈ (𝑇𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14262, 141ralrimi 3139 . . 3 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
14313, 61, 142jca32 515 . 2 (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
144 feq1 6565 . . . . 5 (𝑞 = (𝑌𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌𝐹):(1...𝑀)⟶𝑄))
145 fveq1 6755 . . . . . . . . 9 (𝑞 = (𝑌𝐹) → (𝑞𝑖) = ((𝑌𝐹)‘𝑖))
146145fveq1d 6758 . . . . . . . 8 (𝑞 = (𝑌𝐹) → ((𝑞𝑖)‘𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
147146breq2d 5082 . . . . . . 7 (𝑞 = (𝑌𝐹) → (0 < ((𝑞𝑖)‘𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
148147rexbidv 3225 . . . . . 6 (𝑞 = (𝑌𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
149148ralbidv 3120 . . . . 5 (𝑞 = (𝑌𝐹) → (∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
150144, 149anbi12d 630 . . . 4 (𝑞 = (𝑌𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)) ↔ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
151150anbi2d 628 . . 3 (𝑞 = (𝑌𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))))
152151spcegv 3526 . 2 ((𝑌𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)))))
15312, 143, 152sylc 65 1 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wnfc 2886  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883   cuni 4836   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   < clt 10940  cn 11903  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258
This theorem is referenced by:  stoweidlem35  43466
  Copyright terms: Public domain W3C validator