Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem27 Structured version   Visualization version   GIF version

Theorem stoweidlem27 46018
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem27.1 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
stoweidlem27.2 (𝜑𝑄 ∈ V)
stoweidlem27.3 (𝜑𝑀 ∈ ℕ)
stoweidlem27.4 (𝜑𝑌 Fn ran 𝐺)
stoweidlem27.5 (𝜑 → ran 𝐺 ∈ V)
stoweidlem27.6 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
stoweidlem27.7 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
stoweidlem27.8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
stoweidlem27.9 𝑡𝜑
stoweidlem27.10 𝑤𝜑
stoweidlem27.11 𝑄
Assertion
Ref Expression
stoweidlem27 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Distinct variable groups:   ,𝑖,𝑡,𝑤,𝐹   ,𝑙,𝑌,𝑡,𝑤   𝑇,,𝑤   𝑖,𝑞,𝑡,𝐹   𝑖,𝐺   𝑖,𝑀,𝑞   𝑖,𝑋,𝑤   𝑖,𝑌,𝑞   𝜑,𝑖   𝑄,𝑙   𝜑,𝑙   𝐺,𝑙   𝑄,𝑞   𝑇,𝑞   𝑈,𝑞   𝑤,𝑀   𝑤,𝑄   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝑄(𝑡,,𝑖)   𝑇(𝑡,𝑖,𝑙)   𝑈(𝑡,,𝑖,𝑙)   𝐹(𝑙)   𝐺(𝑤,𝑡,,𝑞)   𝑀(𝑡,,𝑙)   𝑋(𝑡,,𝑞,𝑙)

Proof of Theorem stoweidlem27
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem27.4 . . . 4 (𝜑𝑌 Fn ran 𝐺)
2 stoweidlem27.5 . . . 4 (𝜑 → ran 𝐺 ∈ V)
3 fnex 7153 . . . 4 ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V)
41, 2, 3syl2anc 584 . . 3 (𝜑𝑌 ∈ V)
5 stoweidlem27.7 . . . . 5 (𝜑𝐹:(1...𝑀)–1-1-onto→ran 𝐺)
6 f1ofn 6765 . . . . 5 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹 Fn (1...𝑀))
75, 6syl 17 . . . 4 (𝜑𝐹 Fn (1...𝑀))
8 ovex 7382 . . . 4 (1...𝑀) ∈ V
9 fnex 7153 . . . 4 ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 586 . . 3 (𝜑𝐹 ∈ V)
11 coexg 7862 . . 3 ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌𝐹) ∈ V)
124, 10, 11syl2anc 584 . 2 (𝜑 → (𝑌𝐹) ∈ V)
13 stoweidlem27.3 . . 3 (𝜑𝑀 ∈ ℕ)
14 f1of 6764 . . . . . 6 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺)
155, 14syl 17 . . . . 5 (𝜑𝐹:(1...𝑀)⟶ran 𝐺)
16 fnfco 6689 . . . . 5 ((𝑌 Fn ran 𝐺𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌𝐹) Fn (1...𝑀))
171, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝑌𝐹) Fn (1...𝑀))
18 rncoss 5918 . . . . 5 ran (𝑌𝐹) ⊆ ran 𝑌
19 fvelrnb 6883 . . . . . . . . . . 11 (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
201, 19syl 17 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘))
2120biimpa 476 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘)
22 stoweidlem27.10 . . . . . . . . . . . . . 14 𝑤𝜑
23 stoweidlem27.1 . . . . . . . . . . . . . . . . 17 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
24 nfmpt1 5191 . . . . . . . . . . . . . . . . 17 𝑤(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
2523, 24nfcxfr 2889 . . . . . . . . . . . . . . . 16 𝑤𝐺
2625nfrn 5894 . . . . . . . . . . . . . . 15 𝑤ran 𝐺
2726nfcri 2883 . . . . . . . . . . . . . 14 𝑤 𝑙 ∈ ran 𝐺
2822, 27nfan 1899 . . . . . . . . . . . . 13 𝑤(𝜑𝑙 ∈ ran 𝐺)
29 stoweidlem27.6 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙)
3029ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑙)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
3230, 31eleqtrd 2830 . . . . . . . . . . . . . . 15 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
33 nfcv 2891 . . . . . . . . . . . . . . . 16 (𝑌𝑙)
34 stoweidlem27.11 . . . . . . . . . . . . . . . 16 𝑄
35 nfv 1914 . . . . . . . . . . . . . . . 16 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}
36 fveq1 6821 . . . . . . . . . . . . . . . . . . 19 ( = (𝑌𝑙) → (𝑡) = ((𝑌𝑙)‘𝑡))
3736breq2d 5104 . . . . . . . . . . . . . . . . . 18 ( = (𝑌𝑙) → (0 < (𝑡) ↔ 0 < ((𝑌𝑙)‘𝑡)))
3837rabbidv 3402 . . . . . . . . . . . . . . . . 17 ( = (𝑌𝑙) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)})
3938eqeq2d 2740 . . . . . . . . . . . . . . . 16 ( = (𝑌𝑙) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4033, 34, 35, 39elrabf 3644 . . . . . . . . . . . . . . 15 ((𝑌𝑙) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4132, 40sylib 218 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ((𝑌𝑙) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < ((𝑌𝑙)‘𝑡)}))
4241simpld 494 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (𝑌𝑙) ∈ 𝑄)
43 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺)
4423elrnmpt 5900 . . . . . . . . . . . . . . 15 (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4543, 44syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4643, 45mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑙 ∈ ran 𝐺) → ∃𝑤𝑋 𝑙 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4728, 42, 46r19.29af 3238 . . . . . . . . . . . 12 ((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
4847adantlr 715 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑄)
49 eleq1 2816 . . . . . . . . . . 11 ((𝑌𝑙) = 𝑘 → ((𝑌𝑙) ∈ 𝑄𝑘𝑄))
5048, 49syl5ibcom 245 . . . . . . . . . 10 (((𝜑𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌𝑙) = 𝑘𝑘𝑄))
5150reximdva 3142 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘𝑄))
5221, 51mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘𝑄)
53 idd 24 . . . . . . . . . 10 (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄))
5453a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘𝑄𝑘𝑄)))
5554rexlimdv 3128 . . . . . . . 8 ((𝜑𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘𝑄𝑘𝑄))
5652, 55mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ran 𝑌) → 𝑘𝑄)
5756ex 412 . . . . . 6 (𝜑 → (𝑘 ∈ ran 𝑌𝑘𝑄))
5857ssrdv 3941 . . . . 5 (𝜑 → ran 𝑌𝑄)
5918, 58sstrid 3947 . . . 4 (𝜑 → ran (𝑌𝐹) ⊆ 𝑄)
60 df-f 6486 . . . 4 ((𝑌𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌𝐹) Fn (1...𝑀) ∧ ran (𝑌𝐹) ⊆ 𝑄))
6117, 59, 60sylanbrc 583 . . 3 (𝜑 → (𝑌𝐹):(1...𝑀)⟶𝑄)
62 stoweidlem27.9 . . . 4 𝑡𝜑
63 nfv 1914 . . . . . . 7 𝑤 𝑡 ∈ (𝑇𝑈)
6422, 63nfan 1899 . . . . . 6 𝑤(𝜑𝑡 ∈ (𝑇𝑈))
65 nfv 1914 . . . . . 6 𝑤𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)
66 stoweidlem27.8 . . . . . . . 8 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
6766sselda 3935 . . . . . . 7 ((𝜑𝑡 ∈ (𝑇𝑈)) → 𝑡 𝑋)
68 eluni 4861 . . . . . . 7 (𝑡 𝑋 ↔ ∃𝑤(𝑡𝑤𝑤𝑋))
6967, 68sylib 218 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑤(𝑡𝑤𝑤𝑋))
7023funmpt2 6521 . . . . . . . . . . . 12 Fun 𝐺
7123dmeqi 5847 . . . . . . . . . . . . . . 15 dom 𝐺 = dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
72 stoweidlem27.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑄 ∈ V)
7334rabexgf 45012 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ V → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
7675ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤𝑋 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V))
7722, 76ralrimi 3227 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
78 dmmptg 6191 . . . . . . . . . . . . . . . 16 (∀𝑤𝑋 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
7977, 78syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) = 𝑋)
8071, 79eqtrid 2776 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝑋)
8180eleq2d 2814 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ dom 𝐺𝑤𝑋))
8281biimpar 477 . . . . . . . . . . . 12 ((𝜑𝑤𝑋) → 𝑤 ∈ dom 𝐺)
83 fvelrn 7010 . . . . . . . . . . . 12 ((Fun 𝐺𝑤 ∈ dom 𝐺) → (𝐺𝑤) ∈ ran 𝐺)
8470, 82, 83sylancr 587 . . . . . . . . . . 11 ((𝜑𝑤𝑋) → (𝐺𝑤) ∈ ran 𝐺)
8584adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (𝐺𝑤) ∈ ran 𝐺)
8615ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺)
87 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → 𝑖 ∈ (1...𝑀))
88 fvco3 6922 . . . . . . . . . . . . . 14 ((𝐹:(1...𝑀)⟶ran 𝐺𝑖 ∈ (1...𝑀)) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
8986, 87, 88syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐹𝑖)))
90 fveq2 6822 . . . . . . . . . . . . . 14 ((𝐹𝑖) = (𝐺𝑤) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9190ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐹𝑖)) = (𝑌‘(𝐺𝑤)))
9289, 91eqtrd 2764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) = (𝑌‘(𝐺𝑤)))
93 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺𝑤) ∈ ran 𝐺))
9493anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝜑𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺)))
95 eleq2 2817 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌𝑙) ∈ (𝐺𝑤)))
96 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝐺𝑤) → (𝑌𝑙) = (𝑌‘(𝐺𝑤)))
9796eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ (𝐺𝑤) ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9895, 97bitrd 279 . . . . . . . . . . . . . . . 16 (𝑙 = (𝐺𝑤) → ((𝑌𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
9994, 98imbi12d 344 . . . . . . . . . . . . . . 15 (𝑙 = (𝐺𝑤) → (((𝜑𝑙 ∈ ran 𝐺) → (𝑌𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))))
10099, 29vtoclg 3509 . . . . . . . . . . . . . 14 ((𝐺𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤)))
101100anabsi7 671 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
102101adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → (𝑌‘(𝐺𝑤)) ∈ (𝐺𝑤))
10392, 102eqeltrd 2828 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹𝑖) = (𝐺𝑤))) → ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
104 f1ofo 6771 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–1-1-onto→ran 𝐺𝐹:(1...𝑀)–onto→ran 𝐺)
105 forn 6739 . . . . . . . . . . . . . . 15 (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺)
1065, 104, 1053syl 18 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 = ran 𝐺)
107106eleq2d 2814 . . . . . . . . . . . . 13 (𝜑 → ((𝐺𝑤) ∈ ran 𝐹 ↔ (𝐺𝑤) ∈ ran 𝐺))
108107biimpar 477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → (𝐺𝑤) ∈ ran 𝐹)
1097adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀))
110 fvelrnb 6883 . . . . . . . . . . . . 13 (𝐹 Fn (1...𝑀) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
111109, 110syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ((𝐺𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤)))
112108, 111mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹𝑖) = (𝐺𝑤))
113103, 112reximddv 3145 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
11485, 113syldan 591 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤))
115 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡𝑤)
116 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤𝑋) → 𝑤𝑋)
11723fvmpt2 6941 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑋 ∧ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
118116, 75, 117syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤𝑋) → (𝐺𝑤) = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
119118eleq2d 2814 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤𝑋) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) ↔ ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
120119biimpa 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤𝑋) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
121120adantlrl 720 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → ((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
122 nfcv 2891 . . . . . . . . . . . . . . . . 17 ((𝑌𝐹)‘𝑖)
123 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}
124 fveq1 6821 . . . . . . . . . . . . . . . . . . . 20 ( = ((𝑌𝐹)‘𝑖) → (𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
125124breq2d 5104 . . . . . . . . . . . . . . . . . . 19 ( = ((𝑌𝐹)‘𝑖) → (0 < (𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
126125rabbidv 3402 . . . . . . . . . . . . . . . . . 18 ( = ((𝑌𝐹)‘𝑖) → {𝑡𝑇 ∣ 0 < (𝑡)} = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
127126eqeq2d 2740 . . . . . . . . . . . . . . . . 17 ( = ((𝑌𝐹)‘𝑖) → (𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
128122, 34, 123, 127elrabf 3644 . . . . . . . . . . . . . . . 16 (((𝑌𝐹)‘𝑖) ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
129121, 128sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (((𝑌𝐹)‘𝑖) ∈ 𝑄𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)}))
130129simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑤 = {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
131115, 130eleqtrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)})
132 rabid 3416 . . . . . . . . . . . . 13 (𝑡 ∈ {𝑡𝑇 ∣ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)} ↔ (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
133131, 132sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → (𝑡𝑇 ∧ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
134133simprd 495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑤𝑤𝑋)) ∧ ((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤)) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡))
135134ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
136135reximdv 3144 . . . . . . . . 9 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌𝐹)‘𝑖) ∈ (𝐺𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
137114, 136mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑡𝑤𝑤𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
138137ex 412 . . . . . . 7 (𝜑 → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
139138adantr 480 . . . . . 6 ((𝜑𝑡 ∈ (𝑇𝑈)) → ((𝑡𝑤𝑤𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14064, 65, 69, 139exlimimdd 2220 . . . . 5 ((𝜑𝑡 ∈ (𝑇𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
141140ex 412 . . . 4 (𝜑 → (𝑡 ∈ (𝑇𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
14262, 141ralrimi 3227 . . 3 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))
14313, 61, 142jca32 515 . 2 (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
144 feq1 6630 . . . . 5 (𝑞 = (𝑌𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌𝐹):(1...𝑀)⟶𝑄))
145 fveq1 6821 . . . . . . . . 9 (𝑞 = (𝑌𝐹) → (𝑞𝑖) = ((𝑌𝐹)‘𝑖))
146145fveq1d 6824 . . . . . . . 8 (𝑞 = (𝑌𝐹) → ((𝑞𝑖)‘𝑡) = (((𝑌𝐹)‘𝑖)‘𝑡))
147146breq2d 5104 . . . . . . 7 (𝑞 = (𝑌𝐹) → (0 < ((𝑞𝑖)‘𝑡) ↔ 0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
148147rexbidv 3153 . . . . . 6 (𝑞 = (𝑌𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
149148ralbidv 3152 . . . . 5 (𝑞 = (𝑌𝐹) → (∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))
150144, 149anbi12d 632 . . . 4 (𝑞 = (𝑌𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)) ↔ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))))
151150anbi2d 630 . . 3 (𝑞 = (𝑌𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡)))))
152151spcegv 3552 . 2 ((𝑌𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡)))))
15312, 143, 152sylc 65 1 (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞𝑖)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903   cuni 4858   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  ccom 5623  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   < clt 11149  cn 12128  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352
This theorem is referenced by:  stoweidlem35  46026
  Copyright terms: Public domain W3C validator