| Step | Hyp | Ref
| Expression |
| 1 | | stoweidlem27.4 |
. . . 4
⊢ (𝜑 → 𝑌 Fn ran 𝐺) |
| 2 | | stoweidlem27.5 |
. . . 4
⊢ (𝜑 → ran 𝐺 ∈ V) |
| 3 | | fnex 7237 |
. . . 4
⊢ ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝑌 ∈ V) |
| 5 | | stoweidlem27.7 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→ran
𝐺) |
| 6 | | f1ofn 6849 |
. . . . 5
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹 Fn (1...𝑀)) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 Fn (1...𝑀)) |
| 8 | | ovex 7464 |
. . . 4
⊢
(1...𝑀) ∈
V |
| 9 | | fnex 7237 |
. . . 4
⊢ ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V) |
| 10 | 7, 8, 9 | sylancl 586 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 11 | | coexg 7951 |
. . 3
⊢ ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌 ∘ 𝐹) ∈ V) |
| 12 | 4, 10, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑌 ∘ 𝐹) ∈ V) |
| 13 | | stoweidlem27.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 14 | | f1of 6848 |
. . . . . 6
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹:(1...𝑀)⟶ran 𝐺) |
| 15 | 5, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ran 𝐺) |
| 16 | | fnfco 6773 |
. . . . 5
⊢ ((𝑌 Fn ran 𝐺 ∧ 𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌 ∘ 𝐹) Fn (1...𝑀)) |
| 17 | 1, 15, 16 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑌 ∘ 𝐹) Fn (1...𝑀)) |
| 18 | | rncoss 5986 |
. . . . 5
⊢ ran
(𝑌 ∘ 𝐹) ⊆ ran 𝑌 |
| 19 | | fvelrnb 6969 |
. . . . . . . . . . 11
⊢ (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘)) |
| 20 | 1, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘)) |
| 21 | 20 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘) |
| 22 | | stoweidlem27.10 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤𝜑 |
| 23 | | stoweidlem27.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 24 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 25 | 23, 24 | nfcxfr 2903 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑤𝐺 |
| 26 | 25 | nfrn 5963 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤ran
𝐺 |
| 27 | 26 | nfcri 2897 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤 𝑙 ∈ ran 𝐺 |
| 28 | 22, 27 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝜑 ∧ 𝑙 ∈ ran 𝐺) |
| 29 | | stoweidlem27.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ 𝑙) |
| 31 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 32 | 30, 31 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 33 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ(𝑌‘𝑙) |
| 34 | | stoweidlem27.11 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ𝑄 |
| 35 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)} |
| 36 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑌‘𝑙) → (ℎ‘𝑡) = ((𝑌‘𝑙)‘𝑡)) |
| 37 | 36 | breq2d 5155 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑌‘𝑙) → (0 < (ℎ‘𝑡) ↔ 0 < ((𝑌‘𝑙)‘𝑡))) |
| 38 | 37 | rabbidv 3444 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑌‘𝑙) → {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)}) |
| 39 | 38 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑌‘𝑙) → (𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} ↔ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
| 40 | 33, 34, 35, 39 | elrabf 3688 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌‘𝑙) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ↔ ((𝑌‘𝑙) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
| 41 | 32, 40 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → ((𝑌‘𝑙) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
| 42 | 41 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ 𝑄) |
| 43 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺) |
| 44 | 23 | elrnmpt 5969 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
| 46 | 43, 45 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 47 | 28, 42, 46 | r19.29af 3268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑄) |
| 48 | 47 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑄) |
| 49 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ ((𝑌‘𝑙) = 𝑘 → ((𝑌‘𝑙) ∈ 𝑄 ↔ 𝑘 ∈ 𝑄)) |
| 50 | 48, 49 | syl5ibcom 245 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌‘𝑙) = 𝑘 → 𝑘 ∈ 𝑄)) |
| 51 | 50 | reximdva 3168 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄)) |
| 52 | 21, 51 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄) |
| 53 | | idd 24 |
. . . . . . . . . 10
⊢ (𝑙 ∈ ran 𝐺 → (𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄)) |
| 54 | 53 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄))) |
| 55 | 54 | rexlimdv 3153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄)) |
| 56 | 52, 55 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → 𝑘 ∈ 𝑄) |
| 57 | 56 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ran 𝑌 → 𝑘 ∈ 𝑄)) |
| 58 | 57 | ssrdv 3989 |
. . . . 5
⊢ (𝜑 → ran 𝑌 ⊆ 𝑄) |
| 59 | 18, 58 | sstrid 3995 |
. . . 4
⊢ (𝜑 → ran (𝑌 ∘ 𝐹) ⊆ 𝑄) |
| 60 | | df-f 6565 |
. . . 4
⊢ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌 ∘ 𝐹) Fn (1...𝑀) ∧ ran (𝑌 ∘ 𝐹) ⊆ 𝑄)) |
| 61 | 17, 59, 60 | sylanbrc 583 |
. . 3
⊢ (𝜑 → (𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄) |
| 62 | | stoweidlem27.9 |
. . . 4
⊢
Ⅎ𝑡𝜑 |
| 63 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑡 ∈ (𝑇 ∖ 𝑈) |
| 64 | 22, 63 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑤(𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) |
| 65 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑤∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡) |
| 66 | | stoweidlem27.8 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) |
| 67 | 66 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑡 ∈ ∪ 𝑋) |
| 68 | | eluni 4910 |
. . . . . . 7
⊢ (𝑡 ∈ ∪ 𝑋
↔ ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) |
| 69 | 67, 68 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) |
| 70 | 23 | funmpt2 6605 |
. . . . . . . . . . . 12
⊢ Fun 𝐺 |
| 71 | 23 | dmeqi 5915 |
. . . . . . . . . . . . . . 15
⊢ dom 𝐺 = dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 72 | | stoweidlem27.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄 ∈ V) |
| 73 | 34 | rabexgf 45029 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ V → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
| 76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑤 ∈ 𝑋 → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V)) |
| 77 | 22, 76 | ralrimi 3257 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑤 ∈ 𝑋 {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
| 78 | | dmmptg 6262 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
𝑋 {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V → dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) = 𝑋) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) = 𝑋) |
| 80 | 71, 79 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = 𝑋) |
| 81 | 80 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ dom 𝐺 ↔ 𝑤 ∈ 𝑋)) |
| 82 | 81 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ dom 𝐺) |
| 83 | | fvelrn 7096 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐺 ∧ 𝑤 ∈ dom 𝐺) → (𝐺‘𝑤) ∈ ran 𝐺) |
| 84 | 70, 82, 83 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (𝐺‘𝑤) ∈ ran 𝐺) |
| 85 | 84 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (𝐺‘𝑤) ∈ ran 𝐺) |
| 86 | 15 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺) |
| 87 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → 𝑖 ∈ (1...𝑀)) |
| 88 | | fvco3 7008 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(1...𝑀)⟶ran 𝐺 ∧ 𝑖 ∈ (1...𝑀)) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐹‘𝑖))) |
| 89 | 86, 87, 88 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐹‘𝑖))) |
| 90 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑖) = (𝐺‘𝑤) → (𝑌‘(𝐹‘𝑖)) = (𝑌‘(𝐺‘𝑤))) |
| 91 | 90 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → (𝑌‘(𝐹‘𝑖)) = (𝑌‘(𝐺‘𝑤))) |
| 92 | 89, 91 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐺‘𝑤))) |
| 93 | | eleq1 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺‘𝑤) ∈ ran 𝐺)) |
| 94 | 93 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = (𝐺‘𝑤) → ((𝜑 ∧ 𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺))) |
| 95 | | eleq2 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ 𝑙 ↔ (𝑌‘𝑙) ∈ (𝐺‘𝑤))) |
| 96 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = (𝐺‘𝑤) → (𝑌‘𝑙) = (𝑌‘(𝐺‘𝑤))) |
| 97 | 96 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ (𝐺‘𝑤) ↔ (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
| 98 | 95, 97 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
| 99 | 94, 98 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = (𝐺‘𝑤) → (((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)))) |
| 100 | 99, 29 | vtoclg 3554 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
| 101 | 100 | anabsi7 671 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)) |
| 102 | 101 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)) |
| 103 | 92, 102 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
| 104 | | f1ofo 6855 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹:(1...𝑀)–onto→ran 𝐺) |
| 105 | | forn 6823 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺) |
| 106 | 5, 104, 105 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝐹 = ran 𝐺) |
| 107 | 106 | eleq2d 2827 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ (𝐺‘𝑤) ∈ ran 𝐺)) |
| 108 | 107 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝐺‘𝑤) ∈ ran 𝐹) |
| 109 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀)) |
| 110 | | fvelrnb 6969 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn (1...𝑀) → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤))) |
| 111 | 109, 110 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤))) |
| 112 | 108, 111 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤)) |
| 113 | 103, 112 | reximddv 3171 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
| 114 | 85, 113 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
| 115 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑡 ∈ 𝑤) |
| 116 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
| 117 | 23 | fvmpt2 7027 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ 𝑋 ∧ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) → (𝐺‘𝑤) = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 118 | 116, 75, 117 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (𝐺‘𝑤) = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 119 | 118 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) ↔ ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
| 120 | 119 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑋) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 121 | 120 | adantlrl 720 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
| 122 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎℎ((𝑌 ∘ 𝐹)‘𝑖) |
| 123 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎℎ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)} |
| 124 | | fveq1 6905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (ℎ‘𝑡) = (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 125 | 124 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (0 < (ℎ‘𝑡) ↔ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 126 | 125 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
| 127 | 126 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} ↔ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
| 128 | 122, 34, 123, 127 | elrabf 3688 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ↔ (((𝑌 ∘ 𝐹)‘𝑖) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
| 129 | 121, 128 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
| 130 | 129 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
| 131 | 115, 130 | eleqtrd 2843 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
| 132 | | rabid 3458 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)} ↔ (𝑡 ∈ 𝑇 ∧ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 133 | 131, 132 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → (𝑡 ∈ 𝑇 ∧ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 134 | 133 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 135 | 134 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) → 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 136 | 135 | reximdv 3170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 137 | 114, 136 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 138 | 137 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 139 | 138 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 140 | 64, 65, 69, 139 | exlimimdd 2219 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 141 | 140 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝑇 ∖ 𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 142 | 62, 141 | ralrimi 3257 |
. . 3
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 143 | 13, 61, 142 | jca32 515 |
. 2
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)))) |
| 144 | | feq1 6716 |
. . . . 5
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄)) |
| 145 | | fveq1 6905 |
. . . . . . . . 9
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (𝑞‘𝑖) = ((𝑌 ∘ 𝐹)‘𝑖)) |
| 146 | 145 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑞‘𝑖)‘𝑡) = (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
| 147 | 146 | breq2d 5155 |
. . . . . . 7
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (0 < ((𝑞‘𝑖)‘𝑡) ↔ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 148 | 147 | rexbidv 3179 |
. . . . . 6
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 149 | 148 | ralbidv 3178 |
. . . . 5
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
| 150 | 144, 149 | anbi12d 632 |
. . . 4
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)) ↔ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)))) |
| 151 | 150 | anbi2d 630 |
. . 3
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))))) |
| 152 | 151 | spcegv 3597 |
. 2
⊢ ((𝑌 ∘ 𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡))))) |
| 153 | 12, 143, 152 | sylc 65 |
1
⊢ (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)))) |