Step | Hyp | Ref
| Expression |
1 | | stoweidlem27.4 |
. . . 4
⊢ (𝜑 → 𝑌 Fn ran 𝐺) |
2 | | stoweidlem27.5 |
. . . 4
⊢ (𝜑 → ran 𝐺 ∈ V) |
3 | | fnex 7075 |
. . . 4
⊢ ((𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V) → 𝑌 ∈ V) |
4 | 1, 2, 3 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝑌 ∈ V) |
5 | | stoweidlem27.7 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→ran
𝐺) |
6 | | f1ofn 6701 |
. . . . 5
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹 Fn (1...𝑀)) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 Fn (1...𝑀)) |
8 | | ovex 7288 |
. . . 4
⊢
(1...𝑀) ∈
V |
9 | | fnex 7075 |
. . . 4
⊢ ((𝐹 Fn (1...𝑀) ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V) |
10 | 7, 8, 9 | sylancl 585 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
11 | | coexg 7750 |
. . 3
⊢ ((𝑌 ∈ V ∧ 𝐹 ∈ V) → (𝑌 ∘ 𝐹) ∈ V) |
12 | 4, 10, 11 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑌 ∘ 𝐹) ∈ V) |
13 | | stoweidlem27.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
14 | | f1of 6700 |
. . . . . 6
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹:(1...𝑀)⟶ran 𝐺) |
15 | 5, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...𝑀)⟶ran 𝐺) |
16 | | fnfco 6623 |
. . . . 5
⊢ ((𝑌 Fn ran 𝐺 ∧ 𝐹:(1...𝑀)⟶ran 𝐺) → (𝑌 ∘ 𝐹) Fn (1...𝑀)) |
17 | 1, 15, 16 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑌 ∘ 𝐹) Fn (1...𝑀)) |
18 | | rncoss 5870 |
. . . . 5
⊢ ran
(𝑌 ∘ 𝐹) ⊆ ran 𝑌 |
19 | | fvelrnb 6812 |
. . . . . . . . . . 11
⊢ (𝑌 Fn ran 𝐺 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘)) |
20 | 1, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ ran 𝑌 ↔ ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘)) |
21 | 20 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘) |
22 | | stoweidlem27.10 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤𝜑 |
23 | | stoweidlem27.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
24 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤(𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
25 | 23, 24 | nfcxfr 2904 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑤𝐺 |
26 | 25 | nfrn 5850 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤ran
𝐺 |
27 | 26 | nfcri 2893 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤 𝑙 ∈ ran 𝐺 |
28 | 22, 27 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(𝜑 ∧ 𝑙 ∈ ran 𝐺) |
29 | | stoweidlem27.6 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) |
30 | 29 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ 𝑙) |
31 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
32 | 30, 31 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
33 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ(𝑌‘𝑙) |
34 | | stoweidlem27.11 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ𝑄 |
35 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎℎ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)} |
36 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = (𝑌‘𝑙) → (ℎ‘𝑡) = ((𝑌‘𝑙)‘𝑡)) |
37 | 36 | breq2d 5082 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = (𝑌‘𝑙) → (0 < (ℎ‘𝑡) ↔ 0 < ((𝑌‘𝑙)‘𝑡))) |
38 | 37 | rabbidv 3404 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑌‘𝑙) → {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)}) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑌‘𝑙) → (𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} ↔ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
40 | 33, 34, 35, 39 | elrabf 3613 |
. . . . . . . . . . . . . . 15
⊢ ((𝑌‘𝑙) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ↔ ((𝑌‘𝑙) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
41 | 32, 40 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → ((𝑌‘𝑙) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < ((𝑌‘𝑙)‘𝑡)})) |
42 | 41 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑙 ∈ ran 𝐺) ∧ 𝑤 ∈ 𝑋) ∧ 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) → (𝑌‘𝑙) ∈ 𝑄) |
43 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → 𝑙 ∈ ran 𝐺) |
44 | 23 | elrnmpt 5854 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 ∈ ran 𝐺 → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑙 ∈ ran 𝐺 ↔ ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
46 | 43, 45 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → ∃𝑤 ∈ 𝑋 𝑙 = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
47 | 28, 42, 46 | r19.29af 3259 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑄) |
48 | 47 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑄) |
49 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ ((𝑌‘𝑙) = 𝑘 → ((𝑌‘𝑙) ∈ 𝑄 ↔ 𝑘 ∈ 𝑄)) |
50 | 48, 49 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ran 𝑌) ∧ 𝑙 ∈ ran 𝐺) → ((𝑌‘𝑙) = 𝑘 → 𝑘 ∈ 𝑄)) |
51 | 50 | reximdva 3202 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺(𝑌‘𝑙) = 𝑘 → ∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄)) |
52 | 21, 51 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → ∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄) |
53 | | idd 24 |
. . . . . . . . . 10
⊢ (𝑙 ∈ ran 𝐺 → (𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄)) |
54 | 53 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (𝑙 ∈ ran 𝐺 → (𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄))) |
55 | 54 | rexlimdv 3211 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → (∃𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄)) |
56 | 52, 55 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ran 𝑌) → 𝑘 ∈ 𝑄) |
57 | 56 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ran 𝑌 → 𝑘 ∈ 𝑄)) |
58 | 57 | ssrdv 3923 |
. . . . 5
⊢ (𝜑 → ran 𝑌 ⊆ 𝑄) |
59 | 18, 58 | sstrid 3928 |
. . . 4
⊢ (𝜑 → ran (𝑌 ∘ 𝐹) ⊆ 𝑄) |
60 | | df-f 6422 |
. . . 4
⊢ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ↔ ((𝑌 ∘ 𝐹) Fn (1...𝑀) ∧ ran (𝑌 ∘ 𝐹) ⊆ 𝑄)) |
61 | 17, 59, 60 | sylanbrc 582 |
. . 3
⊢ (𝜑 → (𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄) |
62 | | stoweidlem27.9 |
. . . 4
⊢
Ⅎ𝑡𝜑 |
63 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑤 𝑡 ∈ (𝑇 ∖ 𝑈) |
64 | 22, 63 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑤(𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) |
65 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑤∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡) |
66 | | stoweidlem27.8 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ ∪ 𝑋) |
67 | 66 | sselda 3917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑡 ∈ ∪ 𝑋) |
68 | | eluni 4839 |
. . . . . . 7
⊢ (𝑡 ∈ ∪ 𝑋
↔ ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) |
69 | 67, 68 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∃𝑤(𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) |
70 | 23 | funmpt2 6457 |
. . . . . . . . . . . 12
⊢ Fun 𝐺 |
71 | 23 | dmeqi 5802 |
. . . . . . . . . . . . . . 15
⊢ dom 𝐺 = dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
72 | | stoweidlem27.2 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄 ∈ V) |
73 | 34 | rabexgf 42456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ V → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑤 ∈ 𝑋 → {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V)) |
77 | 22, 76 | ralrimi 3139 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑤 ∈ 𝑋 {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) |
78 | | dmmptg 6134 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
𝑋 {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V → dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) = 𝑋) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑤 ∈ 𝑋 ↦ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) = 𝑋) |
80 | 71, 79 | syl5eq 2791 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = 𝑋) |
81 | 80 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ∈ dom 𝐺 ↔ 𝑤 ∈ 𝑋)) |
82 | 81 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ dom 𝐺) |
83 | | fvelrn 6936 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐺 ∧ 𝑤 ∈ dom 𝐺) → (𝐺‘𝑤) ∈ ran 𝐺) |
84 | 70, 82, 83 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (𝐺‘𝑤) ∈ ran 𝐺) |
85 | 84 | adantrl 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (𝐺‘𝑤) ∈ ran 𝐺) |
86 | 15 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → 𝐹:(1...𝑀)⟶ran 𝐺) |
87 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → 𝑖 ∈ (1...𝑀)) |
88 | | fvco3 6849 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:(1...𝑀)⟶ran 𝐺 ∧ 𝑖 ∈ (1...𝑀)) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐹‘𝑖))) |
89 | 86, 87, 88 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐹‘𝑖))) |
90 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑖) = (𝐺‘𝑤) → (𝑌‘(𝐹‘𝑖)) = (𝑌‘(𝐺‘𝑤))) |
91 | 90 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → (𝑌‘(𝐹‘𝑖)) = (𝑌‘(𝐺‘𝑤))) |
92 | 89, 91 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) = (𝑌‘(𝐺‘𝑤))) |
93 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → (𝑙 ∈ ran 𝐺 ↔ (𝐺‘𝑤) ∈ ran 𝐺)) |
94 | 93 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = (𝐺‘𝑤) → ((𝜑 ∧ 𝑙 ∈ ran 𝐺) ↔ (𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺))) |
95 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ 𝑙 ↔ (𝑌‘𝑙) ∈ (𝐺‘𝑤))) |
96 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = (𝐺‘𝑤) → (𝑌‘𝑙) = (𝑌‘(𝐺‘𝑤))) |
97 | 96 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ (𝐺‘𝑤) ↔ (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
98 | 95, 97 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = (𝐺‘𝑤) → ((𝑌‘𝑙) ∈ 𝑙 ↔ (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
99 | 94, 98 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = (𝐺‘𝑤) → (((𝜑 ∧ 𝑙 ∈ ran 𝐺) → (𝑌‘𝑙) ∈ 𝑙) ↔ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)))) |
100 | 99, 29 | vtoclg 3495 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑤) ∈ ran 𝐺 → ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤))) |
101 | 100 | anabsi7 667 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)) |
102 | 101 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → (𝑌‘(𝐺‘𝑤)) ∈ (𝐺‘𝑤)) |
103 | 92, 102 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) ∧ (𝑖 ∈ (1...𝑀) ∧ (𝐹‘𝑖) = (𝐺‘𝑤))) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
104 | | f1ofo 6707 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(1...𝑀)–1-1-onto→ran
𝐺 → 𝐹:(1...𝑀)–onto→ran 𝐺) |
105 | | forn 6675 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(1...𝑀)–onto→ran 𝐺 → ran 𝐹 = ran 𝐺) |
106 | 5, 104, 105 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝐹 = ran 𝐺) |
107 | 106 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ (𝐺‘𝑤) ∈ ran 𝐺)) |
108 | 107 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → (𝐺‘𝑤) ∈ ran 𝐹) |
109 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → 𝐹 Fn (1...𝑀)) |
110 | | fvelrnb 6812 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn (1...𝑀) → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤))) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ((𝐺‘𝑤) ∈ ran 𝐹 ↔ ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤))) |
112 | 108, 111 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)(𝐹‘𝑖) = (𝐺‘𝑤)) |
113 | 103, 112 | reximddv 3203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐺‘𝑤) ∈ ran 𝐺) → ∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
114 | 85, 113 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → ∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) |
115 | | simplrl 773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑡 ∈ 𝑤) |
116 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
117 | 23 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 ∈ 𝑋 ∧ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ∈ V) → (𝐺‘𝑤) = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
118 | 116, 75, 117 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (𝐺‘𝑤) = {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
119 | 118 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑋) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) ↔ ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}})) |
120 | 119 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ 𝑋) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
121 | 120 | adantlrl 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → ((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}}) |
122 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎℎ((𝑌 ∘ 𝐹)‘𝑖) |
123 | | nfv 1918 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎℎ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)} |
124 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (ℎ‘𝑡) = (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
125 | 124 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (0 < (ℎ‘𝑡) ↔ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
126 | 125 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
127 | 126 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = ((𝑌 ∘ 𝐹)‘𝑖) → (𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)} ↔ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
128 | 122, 34, 123, 127 | elrabf 3613 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑌 ∘ 𝐹)‘𝑖) ∈ {ℎ ∈ 𝑄 ∣ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} ↔ (((𝑌 ∘ 𝐹)‘𝑖) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
129 | 121, 128 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ 𝑄 ∧ 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)})) |
130 | 129 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
131 | 115, 130 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 𝑡 ∈ {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)}) |
132 | | rabid 3304 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ {𝑡 ∈ 𝑇 ∣ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)} ↔ (𝑡 ∈ 𝑇 ∧ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
133 | 131, 132 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → (𝑡 ∈ 𝑇 ∧ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
134 | 133 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) ∧ ((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤)) → 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
135 | 134 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) → 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
136 | 135 | reximdv 3201 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → (∃𝑖 ∈ (1...𝑀)((𝑌 ∘ 𝐹)‘𝑖) ∈ (𝐺‘𝑤) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
137 | 114, 136 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
138 | 137 | ex 412 |
. . . . . . 7
⊢ (𝜑 → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
139 | 138 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
140 | 64, 65, 69, 139 | exlimimdd 2215 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
141 | 140 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ (𝑇 ∖ 𝑈) → ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
142 | 62, 141 | ralrimi 3139 |
. . 3
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
143 | 13, 61, 142 | jca32 515 |
. 2
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)))) |
144 | | feq1 6565 |
. . . . 5
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (𝑞:(1...𝑀)⟶𝑄 ↔ (𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄)) |
145 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (𝑞‘𝑖) = ((𝑌 ∘ 𝐹)‘𝑖)) |
146 | 145 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑞‘𝑖)‘𝑡) = (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)) |
147 | 146 | breq2d 5082 |
. . . . . . 7
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (0 < ((𝑞‘𝑖)‘𝑡) ↔ 0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
148 | 147 | rexbidv 3225 |
. . . . . 6
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡) ↔ ∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
149 | 148 | ralbidv 3120 |
. . . . 5
⊢ (𝑞 = (𝑌 ∘ 𝐹) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) |
150 | 144, 149 | anbi12d 630 |
. . . 4
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)) ↔ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡)))) |
151 | 150 | anbi2d 628 |
. . 3
⊢ (𝑞 = (𝑌 ∘ 𝐹) → ((𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡))) ↔ (𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))))) |
152 | 151 | spcegv 3526 |
. 2
⊢ ((𝑌 ∘ 𝐹) ∈ V → ((𝑀 ∈ ℕ ∧ ((𝑌 ∘ 𝐹):(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < (((𝑌 ∘ 𝐹)‘𝑖)‘𝑡))) → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡))))) |
153 | 12, 143, 152 | sylc 65 |
1
⊢ (𝜑 → ∃𝑞(𝑀 ∈ ℕ ∧ (𝑞:(1...𝑀)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)∃𝑖 ∈ (1...𝑀)0 < ((𝑞‘𝑖)‘𝑡)))) |