Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12c-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12c-afv2 43426
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6688. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12c-afv2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c-afv2
StepHypRef Expression
1 nfeu1 2668 . . . 4 𝑦∃!𝑦 𝐴𝐹𝑦
2 nfv 1908 . . . 4 𝑦 𝐴𝐹(𝐹''''𝐴)
3 euex 2656 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦)
4 tz6.12-1-afv2 43425 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦)
54expcom 416 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦))
6 breq2 5061 . . . . . 6 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
76biimprd 250 . . . . 5 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
85, 7syli 39 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
91, 2, 3, 8exlimimdd 2211 . . 3 (∃!𝑦 𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴))
109, 6syl5ibcom 247 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
1110, 5impbid 214 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1530  ∃!weu 2647   class class class wbr 5057  ''''cafv2 43392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-dfat 43303  df-afv2 43393
This theorem is referenced by:  tz6.12i-afv2  43427  dfatbrafv2b  43429  fnbrafv2b  43432  dfatcolem  43439
  Copyright terms: Public domain W3C validator