Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12c-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12c-afv2 46535
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6913. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12c-afv2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c-afv2
StepHypRef Expression
1 nfeu1 2577 . . . 4 𝑦∃!𝑦 𝐴𝐹𝑦
2 nfv 1910 . . . 4 𝑦 𝐴𝐹(𝐹''''𝐴)
3 euex 2566 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦)
4 tz6.12-1-afv2 46534 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦)
54expcom 413 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦))
6 breq2 5146 . . . . . 6 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
76biimprd 247 . . . . 5 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
85, 7syli 39 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
91, 2, 3, 8exlimimdd 2205 . . 3 (∃!𝑦 𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴))
109, 6syl5ibcom 244 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
1110, 5impbid 211 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  ∃!weu 2557   class class class wbr 5142  ''''cafv2 46501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-res 5684  df-iota 6494  df-fun 6544  df-fn 6545  df-dfat 46412  df-afv2 46502
This theorem is referenced by:  tz6.12i-afv2  46536  dfatbrafv2b  46538  fnbrafv2b  46541  dfatcolem  46548
  Copyright terms: Public domain W3C validator