| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12c-afv2 | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6844. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| tz6.12c-afv2 | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2583 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹''''𝐴) | |
| 3 | euex 2572 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
| 4 | tz6.12-1-afv2 47271 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦) | |
| 5 | 4 | expcom 413 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦)) |
| 6 | breq2 5095 | . . . . . 6 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) | |
| 7 | 6 | biimprd 248 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 8 | 5, 7 | syli 39 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 9 | 1, 2, 3, 8 | exlimimdd 2222 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴)) |
| 10 | 9, 6 | syl5ibcom 245 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
| 11 | 10, 5 | impbid 212 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃!weu 2563 class class class wbr 5091 ''''cafv2 47238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-dfat 47149 df-afv2 47239 |
| This theorem is referenced by: tz6.12i-afv2 47273 dfatbrafv2b 47275 fnbrafv2b 47278 dfatcolem 47285 |
| Copyright terms: Public domain | W3C validator |