Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12c-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12c-afv2 47238
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6903. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12c-afv2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c-afv2
StepHypRef Expression
1 nfeu1 2588 . . . 4 𝑦∃!𝑦 𝐴𝐹𝑦
2 nfv 1914 . . . 4 𝑦 𝐴𝐹(𝐹''''𝐴)
3 euex 2577 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦)
4 tz6.12-1-afv2 47237 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦)
54expcom 413 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦))
6 breq2 5128 . . . . . 6 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
76biimprd 248 . . . . 5 ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
85, 7syli 39 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
91, 2, 3, 8exlimimdd 2220 . . 3 (∃!𝑦 𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴))
109, 6syl5ibcom 245 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
1110, 5impbid 212 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  ∃!weu 2568   class class class wbr 5124  ''''cafv2 47204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-dfat 47115  df-afv2 47205
This theorem is referenced by:  tz6.12i-afv2  47239  dfatbrafv2b  47241  fnbrafv2b  47244  dfatcolem  47251
  Copyright terms: Public domain W3C validator