| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12c-afv2 | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6848. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| tz6.12c-afv2 | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2581 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹''''𝐴) | |
| 3 | euex 2570 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
| 4 | tz6.12-1-afv2 47226 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦) | |
| 5 | 4 | expcom 413 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦)) |
| 6 | breq2 5099 | . . . . . 6 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) | |
| 7 | 6 | biimprd 248 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 8 | 5, 7 | syli 39 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 9 | 1, 2, 3, 8 | exlimimdd 2220 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴)) |
| 10 | 9, 6 | syl5ibcom 245 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
| 11 | 10, 5 | impbid 212 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃!weu 2561 class class class wbr 5095 ''''cafv2 47193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fn 6489 df-dfat 47104 df-afv2 47194 |
| This theorem is referenced by: tz6.12i-afv2 47228 dfatbrafv2b 47230 fnbrafv2b 47233 dfatcolem 47240 |
| Copyright terms: Public domain | W3C validator |