| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12c-afv2 | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6903. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| tz6.12c-afv2 | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2588 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
| 2 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹''''𝐴) | |
| 3 | euex 2577 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
| 4 | tz6.12-1-afv2 47237 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦) | |
| 5 | 4 | expcom 413 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹''''𝐴) = 𝑦)) |
| 6 | breq2 5128 | . . . . . 6 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) | |
| 7 | 6 | biimprd 248 | . . . . 5 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 8 | 5, 7 | syli 39 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴))) |
| 9 | 1, 2, 3, 8 | exlimimdd 2220 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹''''𝐴)) |
| 10 | 9, 6 | syl5ibcom 245 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
| 11 | 10, 5 | impbid 212 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃!weu 2568 class class class wbr 5124 ''''cafv2 47204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-dfat 47115 df-afv2 47205 |
| This theorem is referenced by: tz6.12i-afv2 47239 dfatbrafv2b 47241 fnbrafv2b 47244 dfatcolem 47251 |
| Copyright terms: Public domain | W3C validator |