| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) = (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) |
| 2 | 1 | mpofun 7557 |
. . 3
⊢ Fun
(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → Fun (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) |
| 4 | | gsum2d2.u |
. . 3
⊢ (𝜑 → 𝑈 ∈ Fin) |
| 5 | | gsum2d2.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) |
| 6 | 5 | ralrimivva 3202 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐶 𝑋 ∈ 𝐵) |
| 7 | 1 | fmpox 8092 |
. . . . 5
⊢
(∀𝑗 ∈
𝐴 ∀𝑘 ∈ 𝐶 𝑋 ∈ 𝐵 ↔ (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋):∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶)⟶𝐵) |
| 8 | 6, 7 | sylib 218 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋):∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶)⟶𝐵) |
| 9 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑗𝜑 |
| 10 | | nfiu1 5027 |
. . . . . . . 8
⊢
Ⅎ𝑗∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) |
| 11 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑗𝑈 |
| 12 | 10, 11 | nfdif 4129 |
. . . . . . 7
⊢
Ⅎ𝑗(∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) |
| 13 | 12 | nfcri 2897 |
. . . . . 6
⊢
Ⅎ𝑗 𝑧 ∈ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) |
| 14 | 9, 13 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑗(𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) |
| 15 | | nfmpo1 7513 |
. . . . . . 7
⊢
Ⅎ𝑗(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) |
| 16 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑗𝑧 |
| 17 | 15, 16 | nffv 6916 |
. . . . . 6
⊢
Ⅎ𝑗((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) |
| 18 | 17 | nfeq1 2921 |
. . . . 5
⊢
Ⅎ𝑗((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 |
| 19 | | relxp 5703 |
. . . . . . . 8
⊢ Rel
({𝑗} × 𝐶) |
| 20 | 19 | rgenw 3065 |
. . . . . . 7
⊢
∀𝑗 ∈
𝐴 Rel ({𝑗} × 𝐶) |
| 21 | | reliun 5826 |
. . . . . . 7
⊢ (Rel
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗 ∈ 𝐴 Rel ({𝑗} × 𝐶)) |
| 22 | 20, 21 | mpbir 231 |
. . . . . 6
⊢ Rel
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) |
| 23 | | eldifi 4131 |
. . . . . . 7
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶)) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶)) |
| 25 | | elrel 5808 |
. . . . . 6
⊢ ((Rel
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶)) → ∃𝑗∃𝑘 𝑧 = 〈𝑗, 𝑘〉) |
| 26 | 22, 24, 25 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗∃𝑘 𝑧 = 〈𝑗, 𝑘〉) |
| 27 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) |
| 28 | | nfmpo2 7514 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) |
| 29 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑧 |
| 30 | 28, 29 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑘((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) |
| 31 | 30 | nfeq1 2921 |
. . . . . 6
⊢
Ⅎ𝑘((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 |
| 32 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑧 = 〈𝑗, 𝑘〉) |
| 33 | 32 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘〈𝑗, 𝑘〉)) |
| 34 | | df-ov 7434 |
. . . . . . . . 9
⊢ (𝑗(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)𝑘) = ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘〈𝑗, 𝑘〉) |
| 35 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) |
| 36 | 32, 35 | eqeltrrd 2842 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 〈𝑗, 𝑘〉 ∈ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) |
| 37 | 36 | eldifad 3963 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 〈𝑗, 𝑘〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶)) |
| 38 | | opeliunxp 5752 |
. . . . . . . . . . . 12
⊢
(〈𝑗, 𝑘〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ↔ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) |
| 39 | 37, 38 | sylib 218 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) |
| 40 | 39 | simpld 494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑗 ∈ 𝐴) |
| 41 | 39 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑘 ∈ 𝐶) |
| 42 | 39, 5 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑋 ∈ 𝐵) |
| 43 | 1 | ovmpt4g 7580 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ∧ 𝑋 ∈ 𝐵) → (𝑗(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)𝑘) = 𝑋) |
| 44 | 40, 41, 42, 43 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → (𝑗(𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)𝑘) = 𝑋) |
| 45 | 34, 44 | eqtr3id 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘〈𝑗, 𝑘〉) = 𝑋) |
| 46 | | eldifn 4132 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧 ∈ 𝑈) |
| 47 | 46 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ¬ 𝑧 ∈ 𝑈) |
| 48 | 32 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → (𝑧 ∈ 𝑈 ↔ 〈𝑗, 𝑘〉 ∈ 𝑈)) |
| 49 | | df-br 5144 |
. . . . . . . . . . . 12
⊢ (𝑗𝑈𝑘 ↔ 〈𝑗, 𝑘〉 ∈ 𝑈) |
| 50 | 48, 49 | bitr4di 289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → (𝑧 ∈ 𝑈 ↔ 𝑗𝑈𝑘)) |
| 51 | 47, 50 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ¬ 𝑗𝑈𝑘) |
| 52 | 39, 51 | jca 511 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) |
| 53 | | gsum2d2.n |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) |
| 54 | 52, 53 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → 𝑋 = 0 ) |
| 55 | 33, 45, 54 | 3eqtrd 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = 〈𝑗, 𝑘〉)) → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 ) |
| 56 | 55 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = 〈𝑗, 𝑘〉 → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 )) |
| 57 | 27, 31, 56 | exlimd 2218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = 〈𝑗, 𝑘〉 → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 )) |
| 58 | 14, 18, 26, 57 | exlimimdd 2219 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)‘𝑧) = 0 ) |
| 59 | 8, 58 | suppss 8219 |
. . 3
⊢ (𝜑 → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) supp 0 ) ⊆ 𝑈) |
| 60 | 4, 59 | ssfid 9301 |
. 2
⊢ (𝜑 → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) supp 0 ) ∈
Fin) |
| 61 | | gsum2d2.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 62 | | gsum2d2.r |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
| 63 | 62 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐶 ∈ 𝑊) |
| 64 | 1 | mpoexxg 8100 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑗 ∈ 𝐴 𝐶 ∈ 𝑊) → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) ∈ V) |
| 65 | 61, 63, 64 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) ∈ V) |
| 66 | | gsum2d2.z |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
| 67 | 66 | fvexi 6920 |
. . . 4
⊢ 0 ∈
V |
| 68 | 67 | a1i 11 |
. . 3
⊢ (𝜑 → 0 ∈ V) |
| 69 | | isfsupp 9405 |
. . 3
⊢ (((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) finSupp 0 ↔ (Fun (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) ∧ ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) supp 0 ) ∈
Fin))) |
| 70 | 65, 68, 69 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) finSupp 0 ↔ (Fun (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) ∧ ((𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) supp 0 ) ∈
Fin))) |
| 71 | 3, 60, 70 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋) finSupp 0 ) |