MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2lem Structured version   Visualization version   GIF version

Theorem gsum2d2lem 19887
Description: Lemma for gsum2d2 19888: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2lem (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
21mpofun 7476 . . 3 Fun (𝑗𝐴, 𝑘𝐶𝑋)
32a1i 11 . 2 (𝜑 → Fun (𝑗𝐴, 𝑘𝐶𝑋))
4 gsum2d2.u . . 3 (𝜑𝑈 ∈ Fin)
5 gsum2d2.f . . . . . 6 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
65ralrimivva 3176 . . . . 5 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
71fmpox 8005 . . . . 5 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
86, 7sylib 218 . . . 4 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
9 nfv 1915 . . . . . 6 𝑗𝜑
10 nfiu1 4977 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
11 nfcv 2895 . . . . . . . 8 𝑗𝑈
1210, 11nfdif 4078 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
1312nfcri 2887 . . . . . 6 𝑗 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
149, 13nfan 1900 . . . . 5 𝑗(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
15 nfmpo1 7432 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
16 nfcv 2895 . . . . . . 7 𝑗𝑧
1715, 16nffv 6838 . . . . . 6 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
1817nfeq1 2911 . . . . 5 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
19 relxp 5637 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2019rgenw 3052 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
21 reliun 5760 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2220, 21mpbir 231 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
23 eldifi 4080 . . . . . . 7 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
25 elrel 5742 . . . . . 6 ((Rel 𝑗𝐴 ({𝑗} × 𝐶) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐶)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
2622, 24, 25sylancr 587 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
27 nfv 1915 . . . . . 6 𝑘(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
28 nfmpo2 7433 . . . . . . . 8 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
29 nfcv 2895 . . . . . . . 8 𝑘𝑧
3028, 29nffv 6838 . . . . . . 7 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
3130nfeq1 2911 . . . . . 6 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
32 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 = ⟨𝑗, 𝑘⟩)
3332fveq2d 6832 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩))
34 df-ov 7355 . . . . . . . . 9 (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3632, 35eqeltrrd 2834 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3736eldifad 3910 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
38 opeliunxp 5686 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
3937, 38sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗𝐴𝑘𝐶))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑗𝐴)
4139simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑘𝐶)
4239, 5syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋𝐵)
431ovmpt4g 7499 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4440, 41, 42, 43syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4534, 44eqtr3id 2782 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩) = 𝑋)
46 eldifn 4081 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧𝑈)
4746ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑧𝑈)
4832eleq1d 2818 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈))
49 df-br 5094 . . . . . . . . . . . 12 (𝑗𝑈𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈)
5048, 49bitr4di 289 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈𝑗𝑈𝑘))
5147, 50mtbid 324 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑗𝑈𝑘)
5239, 51jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘))
53 gsum2d2.n . . . . . . . . 9 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
5452, 53syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋 = 0 )
5533, 45, 543eqtrd 2772 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
5655expr 456 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5727, 31, 56exlimd 2223 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5814, 18, 26, 57exlimimdd 2224 . . . 4 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
598, 58suppss 8130 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈)
604, 59ssfid 9160 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
61 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
62 gsum2d2.r . . . . 5 ((𝜑𝑗𝐴) → 𝐶𝑊)
6362ralrimiva 3125 . . . 4 (𝜑 → ∀𝑗𝐴 𝐶𝑊)
641mpoexxg 8013 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐶𝑊) → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
6561, 63, 64syl2anc 584 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
66 gsum2d2.z . . . . 5 0 = (0g𝐺)
6766fvexi 6842 . . . 4 0 ∈ V
6867a1i 11 . . 3 (𝜑0 ∈ V)
69 isfsupp 9256 . . 3 (((𝑗𝐴, 𝑘𝐶𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
7065, 68, 69syl2anc 584 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
713, 60, 70mpbir2and 713 1 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  Vcvv 3437  cdif 3895  {csn 4575  cop 4581   ciun 4941   class class class wbr 5093   × cxp 5617  Rel wrel 5624  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354   supp csupp 8096  Fincfn 8875   finSupp cfsupp 9252  Basecbs 17122  0gc0g 17345  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-1o 8391  df-en 8876  df-fin 8879  df-fsupp 9253
This theorem is referenced by:  gsum2d2  19888  gsumcom2  19889
  Copyright terms: Public domain W3C validator