MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2lem Structured version   Visualization version   GIF version

Theorem gsum2d2lem 19886
Description: Lemma for gsum2d2 19887: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2lem (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
21mpofun 7470 . . 3 Fun (𝑗𝐴, 𝑘𝐶𝑋)
32a1i 11 . 2 (𝜑 → Fun (𝑗𝐴, 𝑘𝐶𝑋))
4 gsum2d2.u . . 3 (𝜑𝑈 ∈ Fin)
5 gsum2d2.f . . . . . 6 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
65ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
71fmpox 7999 . . . . 5 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
86, 7sylib 218 . . . 4 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
9 nfv 1915 . . . . . 6 𝑗𝜑
10 nfiu1 4977 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
11 nfcv 2894 . . . . . . . 8 𝑗𝑈
1210, 11nfdif 4079 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
1312nfcri 2886 . . . . . 6 𝑗 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
149, 13nfan 1900 . . . . 5 𝑗(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
15 nfmpo1 7426 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
16 nfcv 2894 . . . . . . 7 𝑗𝑧
1715, 16nffv 6832 . . . . . 6 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
1817nfeq1 2910 . . . . 5 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
19 relxp 5634 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2019rgenw 3051 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
21 reliun 5756 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2220, 21mpbir 231 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
23 eldifi 4081 . . . . . . 7 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
25 elrel 5738 . . . . . 6 ((Rel 𝑗𝐴 ({𝑗} × 𝐶) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐶)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
2622, 24, 25sylancr 587 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
27 nfv 1915 . . . . . 6 𝑘(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
28 nfmpo2 7427 . . . . . . . 8 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
29 nfcv 2894 . . . . . . . 8 𝑘𝑧
3028, 29nffv 6832 . . . . . . 7 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
3130nfeq1 2910 . . . . . 6 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
32 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 = ⟨𝑗, 𝑘⟩)
3332fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩))
34 df-ov 7349 . . . . . . . . 9 (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3632, 35eqeltrrd 2832 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3736eldifad 3914 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
38 opeliunxp 5683 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
3937, 38sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗𝐴𝑘𝐶))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑗𝐴)
4139simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑘𝐶)
4239, 5syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋𝐵)
431ovmpt4g 7493 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4440, 41, 42, 43syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4534, 44eqtr3id 2780 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩) = 𝑋)
46 eldifn 4082 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧𝑈)
4746ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑧𝑈)
4832eleq1d 2816 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈))
49 df-br 5092 . . . . . . . . . . . 12 (𝑗𝑈𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈)
5048, 49bitr4di 289 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈𝑗𝑈𝑘))
5147, 50mtbid 324 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑗𝑈𝑘)
5239, 51jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘))
53 gsum2d2.n . . . . . . . . 9 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
5452, 53syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋 = 0 )
5533, 45, 543eqtrd 2770 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
5655expr 456 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5727, 31, 56exlimd 2221 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5814, 18, 26, 57exlimimdd 2222 . . . 4 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
598, 58suppss 8124 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈)
604, 59ssfid 9153 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
61 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
62 gsum2d2.r . . . . 5 ((𝜑𝑗𝐴) → 𝐶𝑊)
6362ralrimiva 3124 . . . 4 (𝜑 → ∀𝑗𝐴 𝐶𝑊)
641mpoexxg 8007 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐶𝑊) → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
6561, 63, 64syl2anc 584 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
66 gsum2d2.z . . . . 5 0 = (0g𝐺)
6766fvexi 6836 . . . 4 0 ∈ V
6867a1i 11 . . 3 (𝜑0 ∈ V)
69 isfsupp 9249 . . 3 (((𝑗𝐴, 𝑘𝐶𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
7065, 68, 69syl2anc 584 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
713, 60, 70mpbir2and 713 1 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  cdif 3899  {csn 4576  cop 4582   ciun 4941   class class class wbr 5091   × cxp 5614  Rel wrel 5621  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  0gc0g 17343  CMndccmn 19693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-1o 8385  df-en 8870  df-fin 8873  df-fsupp 9246
This theorem is referenced by:  gsum2d2  19887  gsumcom2  19888
  Copyright terms: Public domain W3C validator