MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2lem Structured version   Visualization version   GIF version

Theorem gsum2d2lem 19954
Description: Lemma for gsum2d2 19955: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2lem (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
21mpofun 7531 . . 3 Fun (𝑗𝐴, 𝑘𝐶𝑋)
32a1i 11 . 2 (𝜑 → Fun (𝑗𝐴, 𝑘𝐶𝑋))
4 gsum2d2.u . . 3 (𝜑𝑈 ∈ Fin)
5 gsum2d2.f . . . . . 6 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
65ralrimivva 3187 . . . . 5 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
71fmpox 8066 . . . . 5 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
86, 7sylib 218 . . . 4 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
9 nfv 1914 . . . . . 6 𝑗𝜑
10 nfiu1 5003 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
11 nfcv 2898 . . . . . . . 8 𝑗𝑈
1210, 11nfdif 4104 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
1312nfcri 2890 . . . . . 6 𝑗 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
149, 13nfan 1899 . . . . 5 𝑗(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
15 nfmpo1 7487 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
16 nfcv 2898 . . . . . . 7 𝑗𝑧
1715, 16nffv 6886 . . . . . 6 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
1817nfeq1 2914 . . . . 5 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
19 relxp 5672 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2019rgenw 3055 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
21 reliun 5795 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2220, 21mpbir 231 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
23 eldifi 4106 . . . . . . 7 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
25 elrel 5777 . . . . . 6 ((Rel 𝑗𝐴 ({𝑗} × 𝐶) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐶)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
2622, 24, 25sylancr 587 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
27 nfv 1914 . . . . . 6 𝑘(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
28 nfmpo2 7488 . . . . . . . 8 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
29 nfcv 2898 . . . . . . . 8 𝑘𝑧
3028, 29nffv 6886 . . . . . . 7 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
3130nfeq1 2914 . . . . . 6 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
32 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 = ⟨𝑗, 𝑘⟩)
3332fveq2d 6880 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩))
34 df-ov 7408 . . . . . . . . 9 (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3632, 35eqeltrrd 2835 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3736eldifad 3938 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
38 opeliunxp 5721 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
3937, 38sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗𝐴𝑘𝐶))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑗𝐴)
4139simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑘𝐶)
4239, 5syldan 591 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋𝐵)
431ovmpt4g 7554 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4440, 41, 42, 43syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4534, 44eqtr3id 2784 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩) = 𝑋)
46 eldifn 4107 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧𝑈)
4746ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑧𝑈)
4832eleq1d 2819 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈))
49 df-br 5120 . . . . . . . . . . . 12 (𝑗𝑈𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈)
5048, 49bitr4di 289 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈𝑗𝑈𝑘))
5147, 50mtbid 324 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑗𝑈𝑘)
5239, 51jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘))
53 gsum2d2.n . . . . . . . . 9 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
5452, 53syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋 = 0 )
5533, 45, 543eqtrd 2774 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
5655expr 456 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5727, 31, 56exlimd 2218 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5814, 18, 26, 57exlimimdd 2219 . . . 4 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
598, 58suppss 8193 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈)
604, 59ssfid 9273 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
61 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
62 gsum2d2.r . . . . 5 ((𝜑𝑗𝐴) → 𝐶𝑊)
6362ralrimiva 3132 . . . 4 (𝜑 → ∀𝑗𝐴 𝐶𝑊)
641mpoexxg 8074 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐶𝑊) → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
6561, 63, 64syl2anc 584 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
66 gsum2d2.z . . . . 5 0 = (0g𝐺)
6766fvexi 6890 . . . 4 0 ∈ V
6867a1i 11 . . 3 (𝜑0 ∈ V)
69 isfsupp 9377 . . 3 (((𝑗𝐴, 𝑘𝐶𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
7065, 68, 69syl2anc 584 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
713, 60, 70mpbir2and 713 1 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  Vcvv 3459  cdif 3923  {csn 4601  cop 4607   ciun 4967   class class class wbr 5119   × cxp 5652  Rel wrel 5659  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373  Basecbs 17228  0gc0g 17453  CMndccmn 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-1o 8480  df-en 8960  df-fin 8963  df-fsupp 9374
This theorem is referenced by:  gsum2d2  19955  gsumcom2  19956
  Copyright terms: Public domain W3C validator