MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2d2lem Structured version   Visualization version   GIF version

Theorem gsum2d2lem 20015
Description: Lemma for gsum2d2 20016: show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
Assertion
Ref Expression
gsum2d2lem (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Distinct variable groups:   𝑗,𝑘,𝐵   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)

Proof of Theorem gsum2d2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
21mpofun 7574 . . 3 Fun (𝑗𝐴, 𝑘𝐶𝑋)
32a1i 11 . 2 (𝜑 → Fun (𝑗𝐴, 𝑘𝐶𝑋))
4 gsum2d2.u . . 3 (𝜑𝑈 ∈ Fin)
5 gsum2d2.f . . . . . 6 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
65ralrimivva 3208 . . . . 5 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
71fmpox 8108 . . . . 5 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
86, 7sylib 218 . . . 4 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
9 nfv 1913 . . . . . 6 𝑗𝜑
10 nfiu1 5050 . . . . . . . 8 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
11 nfcv 2908 . . . . . . . 8 𝑗𝑈
1210, 11nfdif 4152 . . . . . . 7 𝑗( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
1312nfcri 2900 . . . . . 6 𝑗 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)
149, 13nfan 1898 . . . . 5 𝑗(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
15 nfmpo1 7530 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
16 nfcv 2908 . . . . . . 7 𝑗𝑧
1715, 16nffv 6930 . . . . . 6 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
1817nfeq1 2924 . . . . 5 𝑗((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
19 relxp 5718 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2019rgenw 3071 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
21 reliun 5840 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2220, 21mpbir 231 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
23 eldifi 4154 . . . . . . 7 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
2423adantl 481 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐶))
25 elrel 5822 . . . . . 6 ((Rel 𝑗𝐴 ({𝑗} × 𝐶) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐶)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
2622, 24, 25sylancr 586 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ∃𝑗𝑘 𝑧 = ⟨𝑗, 𝑘⟩)
27 nfv 1913 . . . . . 6 𝑘(𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
28 nfmpo2 7531 . . . . . . . 8 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
29 nfcv 2908 . . . . . . . 8 𝑘𝑧
3028, 29nffv 6930 . . . . . . 7 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧)
3130nfeq1 2924 . . . . . 6 𝑘((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0
32 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 = ⟨𝑗, 𝑘⟩)
3332fveq2d 6924 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩))
34 df-ov 7451 . . . . . . . . 9 (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩)
35 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3632, 35eqeltrrd 2845 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈))
3736eldifad 3988 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶))
38 opeliunxp 5767 . . . . . . . . . . . 12 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
3937, 38sylib 218 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗𝐴𝑘𝐶))
4039simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑗𝐴)
4139simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑘𝐶)
4239, 5syldan 590 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋𝐵)
431ovmpt4g 7597 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4440, 41, 42, 43syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
4534, 44eqtr3id 2794 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑗, 𝑘⟩) = 𝑋)
46 eldifn 4155 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) → ¬ 𝑧𝑈)
4746ad2antrl 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑧𝑈)
4832eleq1d 2829 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈))
49 df-br 5167 . . . . . . . . . . . 12 (𝑗𝑈𝑘 ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑈)
5048, 49bitr4di 289 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → (𝑧𝑈𝑗𝑈𝑘))
5147, 50mtbid 324 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ¬ 𝑗𝑈𝑘)
5239, 51jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘))
53 gsum2d2.n . . . . . . . . 9 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
5452, 53syldan 590 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → 𝑋 = 0 )
5533, 45, 543eqtrd 2784 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈) ∧ 𝑧 = ⟨𝑗, 𝑘⟩)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
5655expr 456 . . . . . 6 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5727, 31, 56exlimd 2219 . . . . 5 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → (∃𝑘 𝑧 = ⟨𝑗, 𝑘⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 ))
5814, 18, 26, 57exlimimdd 2220 . . . 4 ((𝜑𝑧 ∈ ( 𝑗𝐴 ({𝑗} × 𝐶) ∖ 𝑈)) → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑧) = 0 )
598, 58suppss 8235 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ⊆ 𝑈)
604, 59ssfid 9329 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)
61 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
62 gsum2d2.r . . . . 5 ((𝜑𝑗𝐴) → 𝐶𝑊)
6362ralrimiva 3152 . . . 4 (𝜑 → ∀𝑗𝐴 𝐶𝑊)
641mpoexxg 8116 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐶𝑊) → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
6561, 63, 64syl2anc 583 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) ∈ V)
66 gsum2d2.z . . . . 5 0 = (0g𝐺)
6766fvexi 6934 . . . 4 0 ∈ V
6867a1i 11 . . 3 (𝜑0 ∈ V)
69 isfsupp 9435 . . 3 (((𝑗𝐴, 𝑘𝐶𝑋) ∈ V ∧ 0 ∈ V) → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
7065, 68, 69syl2anc 583 . 2 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 ↔ (Fun (𝑗𝐴, 𝑘𝐶𝑋) ∧ ((𝑗𝐴, 𝑘𝐶𝑋) supp 0 ) ∈ Fin)))
713, 60, 70mpbir2and 712 1 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  {csn 4648  cop 4654   ciun 5015   class class class wbr 5166   × cxp 5698  Rel wrel 5705  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  0gc0g 17499  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  gsum2d2  20016  gsumcom2  20017
  Copyright terms: Public domain W3C validator