Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intsaluni Structured version   Visualization version   GIF version

Theorem intsaluni 46349
Description: The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
intsaluni.ga (𝜑𝐺 ⊆ SAlg)
intsaluni.gn0 (𝜑𝐺 ≠ ∅)
intsaluni.x ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
Assertion
Ref Expression
intsaluni (𝜑 𝐺 = 𝑋)
Distinct variable groups:   𝐺,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem intsaluni
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . 2 𝑠𝜑
2 nfv 1913 . 2 𝑠 𝐺 = 𝑋
3 intsaluni.gn0 . . 3 (𝜑𝐺 ≠ ∅)
4 n0 4352 . . . 4 (𝐺 ≠ ∅ ↔ ∃𝑠 𝑠𝐺)
54biimpi 216 . . 3 (𝐺 ≠ ∅ → ∃𝑠 𝑠𝐺)
63, 5syl 17 . 2 (𝜑 → ∃𝑠 𝑠𝐺)
7 intss1 4962 . . . . . . 7 (𝑠𝐺 𝐺𝑠)
87unissd 4916 . . . . . 6 (𝑠𝐺 𝐺 𝑠)
98adantl 481 . . . . 5 ((𝜑𝑠𝐺) → 𝐺 𝑠)
10 intsaluni.x . . . . 5 ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
119, 10sseqtrd 4019 . . . 4 ((𝜑𝑠𝐺) → 𝐺𝑋)
1210adantr 480 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑋)
13 eleq1w 2823 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 → (𝑠𝐺𝑡𝐺))
1413anbi2d 630 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ((𝜑𝑠𝐺) ↔ (𝜑𝑡𝐺)))
15 unieq 4917 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 𝑠 = 𝑡)
1615eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
1714, 16imbi12d 344 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (((𝜑𝑠𝐺) → 𝑠 = 𝑋) ↔ ((𝜑𝑡𝐺) → 𝑡 = 𝑋)))
1817, 10chvarvv 1997 . . . . . . . . . . . . 13 ((𝜑𝑡𝐺) → 𝑡 = 𝑋)
1918eqcomd 2742 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑋 = 𝑡)
2019adantlr 715 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑋 = 𝑡)
2112, 20eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑡)
22 intsaluni.ga . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ SAlg)
2322sselda 3982 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑡 ∈ SAlg)
24 saluni 46345 . . . . . . . . . . . 12 (𝑡 ∈ SAlg → 𝑡𝑡)
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝐺) → 𝑡𝑡)
2625adantlr 715 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑡𝑡)
2721, 26eqeltrd 2840 . . . . . . . . 9 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠𝑡)
2827ralrimiva 3145 . . . . . . . 8 ((𝜑𝑠𝐺) → ∀𝑡𝐺 𝑠𝑡)
29 uniexg 7761 . . . . . . . . . 10 (𝑠𝐺 𝑠 ∈ V)
3029adantl 481 . . . . . . . . 9 ((𝜑𝑠𝐺) → 𝑠 ∈ V)
31 elintg 4953 . . . . . . . . 9 ( 𝑠 ∈ V → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑠𝐺) → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3328, 32mpbird 257 . . . . . . 7 ((𝜑𝑠𝐺) → 𝑠 𝐺)
3433adantr 480 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑠 𝐺)
35 simpr 484 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥𝑋)
3610eqcomd 2742 . . . . . . . 8 ((𝜑𝑠𝐺) → 𝑋 = 𝑠)
3736adantr 480 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑋 = 𝑠)
3835, 37eleqtrd 2842 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝑠)
39 eleq2 2829 . . . . . . 7 (𝑦 = 𝑠 → (𝑥𝑦𝑥 𝑠))
4039rspcev 3621 . . . . . 6 (( 𝑠 𝐺𝑥 𝑠) → ∃𝑦 𝐺𝑥𝑦)
4134, 38, 40syl2anc 584 . . . . 5 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → ∃𝑦 𝐺𝑥𝑦)
42 eluni2 4910 . . . . 5 (𝑥 𝐺 ↔ ∃𝑦 𝐺𝑥𝑦)
4341, 42sylibr 234 . . . 4 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝐺)
4411, 43eqelssd 4004 . . 3 ((𝜑𝑠𝐺) → 𝐺 = 𝑋)
4544ex 412 . 2 (𝜑 → (𝑠𝐺 𝐺 = 𝑋))
461, 2, 6, 45exlimimdd 2218 1 (𝜑 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  wss 3950  c0 4332   cuni 4906   cint 4945  SAlgcsalg 46328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-ss 3967  df-nul 4333  df-pw 4601  df-uni 4907  df-int 4946  df-salg 46329
This theorem is referenced by:  intsal  46350  salgenuni  46357
  Copyright terms: Public domain W3C validator