Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intsaluni Structured version   Visualization version   GIF version

Theorem intsaluni 42969
Description: The union of an arbitrary intersection of sigma-algebras on the same set 𝑋, is 𝑋. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
intsaluni.ga (𝜑𝐺 ⊆ SAlg)
intsaluni.gn0 (𝜑𝐺 ≠ ∅)
intsaluni.x ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
Assertion
Ref Expression
intsaluni (𝜑 𝐺 = 𝑋)
Distinct variable groups:   𝐺,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem intsaluni
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑠𝜑
2 nfv 1915 . 2 𝑠 𝐺 = 𝑋
3 intsaluni.gn0 . . 3 (𝜑𝐺 ≠ ∅)
4 n0 4260 . . . 4 (𝐺 ≠ ∅ ↔ ∃𝑠 𝑠𝐺)
54biimpi 219 . . 3 (𝐺 ≠ ∅ → ∃𝑠 𝑠𝐺)
63, 5syl 17 . 2 (𝜑 → ∃𝑠 𝑠𝐺)
7 intss1 4853 . . . . . . 7 (𝑠𝐺 𝐺𝑠)
87unissd 4810 . . . . . 6 (𝑠𝐺 𝐺 𝑠)
98adantl 485 . . . . 5 ((𝜑𝑠𝐺) → 𝐺 𝑠)
10 intsaluni.x . . . . 5 ((𝜑𝑠𝐺) → 𝑠 = 𝑋)
119, 10sseqtrd 3955 . . . 4 ((𝜑𝑠𝐺) → 𝐺𝑋)
1210adantr 484 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑋)
13 eleq1w 2872 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 → (𝑠𝐺𝑡𝐺))
1413anbi2d 631 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ((𝜑𝑠𝐺) ↔ (𝜑𝑡𝐺)))
15 unieq 4811 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 𝑠 = 𝑡)
1615eqeq1d 2800 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
1714, 16imbi12d 348 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (((𝜑𝑠𝐺) → 𝑠 = 𝑋) ↔ ((𝜑𝑡𝐺) → 𝑡 = 𝑋)))
1817, 10chvarvv 2005 . . . . . . . . . . . . 13 ((𝜑𝑡𝐺) → 𝑡 = 𝑋)
1918eqcomd 2804 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑋 = 𝑡)
2019adantlr 714 . . . . . . . . . . 11 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑋 = 𝑡)
2112, 20eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠 = 𝑡)
22 intsaluni.ga . . . . . . . . . . . . 13 (𝜑𝐺 ⊆ SAlg)
2322sselda 3915 . . . . . . . . . . . 12 ((𝜑𝑡𝐺) → 𝑡 ∈ SAlg)
24 saluni 42966 . . . . . . . . . . . 12 (𝑡 ∈ SAlg → 𝑡𝑡)
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑡𝐺) → 𝑡𝑡)
2625adantlr 714 . . . . . . . . . 10 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑡𝑡)
2721, 26eqeltrd 2890 . . . . . . . . 9 (((𝜑𝑠𝐺) ∧ 𝑡𝐺) → 𝑠𝑡)
2827ralrimiva 3149 . . . . . . . 8 ((𝜑𝑠𝐺) → ∀𝑡𝐺 𝑠𝑡)
29 uniexg 7446 . . . . . . . . . 10 (𝑠𝐺 𝑠 ∈ V)
3029adantl 485 . . . . . . . . 9 ((𝜑𝑠𝐺) → 𝑠 ∈ V)
31 elintg 4846 . . . . . . . . 9 ( 𝑠 ∈ V → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3230, 31syl 17 . . . . . . . 8 ((𝜑𝑠𝐺) → ( 𝑠 𝐺 ↔ ∀𝑡𝐺 𝑠𝑡))
3328, 32mpbird 260 . . . . . . 7 ((𝜑𝑠𝐺) → 𝑠 𝐺)
3433adantr 484 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑠 𝐺)
35 simpr 488 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥𝑋)
3610eqcomd 2804 . . . . . . . 8 ((𝜑𝑠𝐺) → 𝑋 = 𝑠)
3736adantr 484 . . . . . . 7 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑋 = 𝑠)
3835, 37eleqtrd 2892 . . . . . 6 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝑠)
39 eleq2 2878 . . . . . . 7 (𝑦 = 𝑠 → (𝑥𝑦𝑥 𝑠))
4039rspcev 3571 . . . . . 6 (( 𝑠 𝐺𝑥 𝑠) → ∃𝑦 𝐺𝑥𝑦)
4134, 38, 40syl2anc 587 . . . . 5 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → ∃𝑦 𝐺𝑥𝑦)
42 eluni2 4804 . . . . 5 (𝑥 𝐺 ↔ ∃𝑦 𝐺𝑥𝑦)
4341, 42sylibr 237 . . . 4 (((𝜑𝑠𝐺) ∧ 𝑥𝑋) → 𝑥 𝐺)
4411, 43eqelssd 3936 . . 3 ((𝜑𝑠𝐺) → 𝐺 = 𝑋)
4544ex 416 . 2 (𝜑 → (𝑠𝐺 𝐺 = 𝑋))
461, 2, 6, 45exlimimdd 2217 1 (𝜑 𝐺 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   cuni 4800   cint 4838  SAlgcsalg 42950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-uni 4801  df-int 4839  df-salg 42951
This theorem is referenced by:  intsal  42970  salgenuni  42977
  Copyright terms: Public domain W3C validator