Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. 2
⊢
Ⅎ𝑠𝜑 |
2 | | nfv 1917 |
. 2
⊢
Ⅎ𝑠∪ ∩ 𝐺 = 𝑋 |
3 | | intsaluni.gn0 |
. . 3
⊢ (𝜑 → 𝐺 ≠ ∅) |
4 | | n0 4280 |
. . . 4
⊢ (𝐺 ≠ ∅ ↔
∃𝑠 𝑠 ∈ 𝐺) |
5 | 4 | biimpi 215 |
. . 3
⊢ (𝐺 ≠ ∅ →
∃𝑠 𝑠 ∈ 𝐺) |
6 | 3, 5 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑠 𝑠 ∈ 𝐺) |
7 | | intss1 4894 |
. . . . . . 7
⊢ (𝑠 ∈ 𝐺 → ∩ 𝐺 ⊆ 𝑠) |
8 | 7 | unissd 4849 |
. . . . . 6
⊢ (𝑠 ∈ 𝐺 → ∪ ∩ 𝐺
⊆ ∪ 𝑠) |
9 | 8 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ ∩ 𝐺
⊆ ∪ 𝑠) |
10 | | intsaluni.x |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) |
11 | 9, 10 | sseqtrd 3961 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ ∩ 𝐺
⊆ 𝑋) |
12 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑡 ∈ 𝐺) → ∪ 𝑠 = 𝑋) |
13 | | eleq1w 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑡 → (𝑠 ∈ 𝐺 ↔ 𝑡 ∈ 𝐺)) |
14 | 13 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → ((𝜑 ∧ 𝑠 ∈ 𝐺) ↔ (𝜑 ∧ 𝑡 ∈ 𝐺))) |
15 | | unieq 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪
𝑡) |
16 | 15 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → (∪ 𝑠 = 𝑋 ↔ ∪ 𝑡 = 𝑋)) |
17 | 14, 16 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 = 𝑋) ↔ ((𝜑 ∧ 𝑡 ∈ 𝐺) → ∪ 𝑡 = 𝑋))) |
18 | 17, 10 | chvarvv 2002 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐺) → ∪ 𝑡 = 𝑋) |
19 | 18 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐺) → 𝑋 = ∪ 𝑡) |
20 | 19 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑡 ∈ 𝐺) → 𝑋 = ∪ 𝑡) |
21 | 12, 20 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑡 ∈ 𝐺) → ∪ 𝑠 = ∪
𝑡) |
22 | | intsaluni.ga |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ⊆ SAlg) |
23 | 22 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐺) → 𝑡 ∈ SAlg) |
24 | | saluni 43865 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ SAlg → ∪ 𝑡
∈ 𝑡) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐺) → ∪ 𝑡 ∈ 𝑡) |
26 | 25 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑡 ∈ 𝐺) → ∪ 𝑡 ∈ 𝑡) |
27 | 21, 26 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑡 ∈ 𝐺) → ∪ 𝑠 ∈ 𝑡) |
28 | 27 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∀𝑡 ∈ 𝐺 ∪ 𝑠 ∈ 𝑡) |
29 | | uniexg 7593 |
. . . . . . . . . 10
⊢ (𝑠 ∈ 𝐺 → ∪ 𝑠 ∈ V) |
30 | 29 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 ∈ V) |
31 | | elintg 4887 |
. . . . . . . . 9
⊢ (∪ 𝑠
∈ V → (∪ 𝑠 ∈ ∩ 𝐺 ↔ ∀𝑡 ∈ 𝐺 ∪ 𝑠 ∈ 𝑡)) |
32 | 30, 31 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → (∪ 𝑠 ∈ ∩ 𝐺
↔ ∀𝑡 ∈
𝐺 ∪ 𝑠
∈ 𝑡)) |
33 | 28, 32 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ 𝑠 ∈ ∩ 𝐺) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → ∪ 𝑠 ∈ ∩ 𝐺) |
35 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
36 | 10 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → 𝑋 = ∪ 𝑠) |
37 | 36 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑋 = ∪ 𝑠) |
38 | 35, 37 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ 𝑠) |
39 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑦 = ∪
𝑠 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ∪ 𝑠)) |
40 | 39 | rspcev 3561 |
. . . . . 6
⊢ ((∪ 𝑠
∈ ∩ 𝐺 ∧ 𝑥 ∈ ∪ 𝑠) → ∃𝑦 ∈ ∩ 𝐺𝑥 ∈ 𝑦) |
41 | 34, 38, 40 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ ∩ 𝐺𝑥 ∈ 𝑦) |
42 | | eluni2 4843 |
. . . . 5
⊢ (𝑥 ∈ ∪ ∩ 𝐺 ↔ ∃𝑦 ∈ ∩ 𝐺𝑥 ∈ 𝑦) |
43 | 41, 42 | sylibr 233 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐺) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ∪ ∩ 𝐺) |
44 | 11, 43 | eqelssd 3942 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝐺) → ∪ ∩ 𝐺 =
𝑋) |
45 | 44 | ex 413 |
. 2
⊢ (𝜑 → (𝑠 ∈ 𝐺 → ∪ ∩ 𝐺 =
𝑋)) |
46 | 1, 2, 6, 45 | exlimimdd 2212 |
1
⊢ (𝜑 → ∪ ∩ 𝐺 = 𝑋) |