Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . 3
⊢ (𝜑 → 𝜑) |
2 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝐵 → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = (𝐹‘𝑛)) |
3 | 2 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = (𝐹‘𝑛)) |
4 | | isomenndlem.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝑌) |
5 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝐹:𝐵–1-1-onto→𝑌 → 𝐹:𝐵⟶𝑌) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐵⟶𝑌) |
7 | | ssun1 4106 |
. . . . . . . . . . 11
⊢ 𝑌 ⊆ (𝑌 ∪ {∅}) |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ⊆ (𝑌 ∪ {∅})) |
9 | 6, 8 | fssd 6618 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐵⟶(𝑌 ∪ {∅})) |
10 | 9 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑛) ∈ (𝑌 ∪ {∅})) |
11 | 3, 10 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ (𝑌 ∪ {∅})) |
12 | 11 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ (𝑌 ∪ {∅})) |
13 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬
𝑛 ∈ 𝐵 → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = ∅) |
14 | 13 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = ∅) |
15 | | 0ex 5231 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
16 | 15 | snid 4597 |
. . . . . . . . . 10
⊢ ∅
∈ {∅} |
17 | | elun2 4111 |
. . . . . . . . . 10
⊢ (∅
∈ {∅} → ∅ ∈ (𝑌 ∪ {∅})) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ ∅
∈ (𝑌 ∪
{∅}) |
19 | 18 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑛 ∈ 𝐵) → ∅ ∈ (𝑌 ∪ {∅})) |
20 | 14, 19 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ (𝑌 ∪ {∅})) |
21 | 20 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ (𝑌 ∪ {∅})) |
22 | 12, 21 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ (𝑌 ∪ {∅})) |
23 | | isomenndlem.a |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
24 | 22, 23 | fmptd 6988 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ⟶(𝑌 ∪ {∅})) |
25 | | isomenndlem.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) |
26 | | 0elpw 5278 |
. . . . . . 7
⊢ ∅
∈ 𝒫 𝑋 |
27 | | snssi 4741 |
. . . . . . 7
⊢ (∅
∈ 𝒫 𝑋 →
{∅} ⊆ 𝒫 𝑋) |
28 | 26, 27 | ax-mp 5 |
. . . . . 6
⊢ {∅}
⊆ 𝒫 𝑋 |
29 | 28 | a1i 11 |
. . . . 5
⊢ (𝜑 → {∅} ⊆
𝒫 𝑋) |
30 | 25, 29 | unssd 4120 |
. . . 4
⊢ (𝜑 → (𝑌 ∪ {∅}) ⊆ 𝒫 𝑋) |
31 | 24, 30 | fssd 6618 |
. . 3
⊢ (𝜑 → 𝐴:ℕ⟶𝒫 𝑋) |
32 | | nnex 11979 |
. . . . . 6
⊢ ℕ
∈ V |
33 | 32 | mptex 7099 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) ∈ V |
34 | 23, 33 | eqeltri 2835 |
. . . 4
⊢ 𝐴 ∈ V |
35 | | feq1 6581 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑎:ℕ⟶𝒫 𝑋 ↔ 𝐴:ℕ⟶𝒫 𝑋)) |
36 | 35 | anbi2d 629 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) ↔ (𝜑 ∧ 𝐴:ℕ⟶𝒫 𝑋))) |
37 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (𝑎‘𝑛) = (𝐴‘𝑛)) |
38 | 37 | iuneq2d 4953 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → ∪
𝑛 ∈ ℕ (𝑎‘𝑛) = ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
39 | 38 | fveq2d 6778 |
. . . . . 6
⊢ (𝑎 = 𝐴 → (𝑂‘∪
𝑛 ∈ ℕ (𝑎‘𝑛)) = (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛))) |
40 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ) → 𝑎 = 𝐴) |
41 | 40 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ) → (𝑎‘𝑛) = (𝐴‘𝑛)) |
42 | 41 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ) → (𝑂‘(𝑎‘𝑛)) = (𝑂‘(𝐴‘𝑛))) |
43 | 42 | mpteq2dva 5174 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛)))) |
44 | 43 | fveq2d 6778 |
. . . . . 6
⊢ (𝑎 = 𝐴 →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛)))) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))))) |
45 | 39, 44 | breq12d 5087 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((𝑂‘∪
𝑛 ∈ ℕ (𝑎‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛)))) ↔ (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛)))))) |
46 | 36, 45 | imbi12d 345 |
. . . 4
⊢ (𝑎 = 𝐴 → (((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪
𝑛 ∈ ℕ (𝑎‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) ↔ ((𝜑 ∧ 𝐴:ℕ⟶𝒫 𝑋) → (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))))))) |
47 | | isomenndlem.subadd |
. . . 4
⊢ ((𝜑 ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂‘∪
𝑛 ∈ ℕ (𝑎‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎‘𝑛))))) |
48 | 34, 46, 47 | vtocl 3498 |
. . 3
⊢ ((𝜑 ∧ 𝐴:ℕ⟶𝒫 𝑋) → (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))))) |
49 | 1, 31, 48 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))))) |
50 | 6 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝐹:𝐵⟶𝑌) |
51 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ) |
52 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 = ℕ → 𝐵 = ℕ) |
53 | 52 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = ℕ → ℕ =
𝐵) |
54 | 53 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → ℕ
= 𝐵) |
55 | 51, 54 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ 𝐵) |
56 | 55 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ 𝐵) |
57 | 50, 56 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑌) |
58 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ (𝐹‘𝑛)) = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛)) |
59 | 57, 58 | fmptd 6988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 = ℕ) → (𝑛 ∈ ℕ ↦ (𝐹‘𝑛)):ℕ⟶𝑌) |
60 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))) |
61 | 55 | iftrued 4467 |
. . . . . . . . . . . . 13
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = (𝐹‘𝑛)) |
62 | 61 | mpteq2dva 5174 |
. . . . . . . . . . . 12
⊢ (𝐵 = ℕ → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
63 | 60, 62 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ (𝐹‘𝑛))) |
64 | 63 | feq1d 6585 |
. . . . . . . . . 10
⊢ (𝐵 = ℕ → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹‘𝑛)):ℕ⟶𝑌)) |
65 | 64 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹‘𝑛)):ℕ⟶𝑌)) |
66 | 59, 65 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 = ℕ) → 𝐴:ℕ⟶𝑌) |
67 | | f1ofo 6723 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐵–1-1-onto→𝑌 → 𝐹:𝐵–onto→𝑌) |
68 | 4, 67 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐵–onto→𝑌) |
69 | | dffo3 6978 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐵–onto→𝑌 ↔ (𝐹:𝐵⟶𝑌 ∧ ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛))) |
70 | 68, 69 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹:𝐵⟶𝑌 ∧ ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛))) |
71 | 70 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛)) |
72 | 71 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛)) |
73 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
74 | | rspa 3132 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
𝑌 ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛) ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛)) |
75 | 72, 73, 74 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛)) |
76 | 75 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛)) |
77 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ 𝐵 = ℕ) |
78 | | nfre1 3239 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛) |
79 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ 𝐵) |
80 | | simpl 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → 𝐵 = ℕ) |
81 | 79, 80 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ ℕ) |
82 | 81 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ ℕ) |
83 | 82 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → 𝑛 ∈ ℕ) |
84 | 60 | fveq1d 6776 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = ℕ → (𝐴‘𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛)) |
85 | 84 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → (𝐴‘𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛)) |
86 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹‘𝑛) ∈ V |
87 | 86, 15 | ifex 4509 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V) |
89 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
90 | 89 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
91 | 81, 88, 90 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
92 | 2 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = (𝐹‘𝑛)) |
93 | 91, 92 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛) = (𝐹‘𝑛)) |
94 | 93 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅))‘𝑛) = (𝐹‘𝑛)) |
95 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝐹‘𝑛) → 𝑦 = (𝐹‘𝑛)) |
96 | 95 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝐹‘𝑛) → (𝐹‘𝑛) = 𝑦) |
97 | 96 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → (𝐹‘𝑛) = 𝑦) |
98 | 85, 94, 97 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → 𝑦 = (𝐴‘𝑛)) |
99 | 98 | 3adant1l 1175 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → 𝑦 = (𝐴‘𝑛)) |
100 | | rspe 3237 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ∧ 𝑦 = (𝐴‘𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
101 | 83, 99, 100 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = (𝐹‘𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
102 | 101 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐵 = ℕ) → (𝑛 ∈ 𝐵 → (𝑦 = (𝐹‘𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)))) |
103 | 77, 78, 102 | rexlimd 3250 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐵 = ℕ) → (∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
104 | 103 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑦 ∈ 𝑌) → (∃𝑛 ∈ 𝐵 𝑦 = (𝐹‘𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
105 | 76, 104 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐵 = ℕ) ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
106 | 105 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 = ℕ) → ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
107 | 66, 106 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ∧ ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
108 | | dffo3 6978 |
. . . . . . 7
⊢ (𝐴:ℕ–onto→𝑌 ↔ (𝐴:ℕ⟶𝑌 ∧ ∀𝑦 ∈ 𝑌 ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
109 | 107, 108 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 = ℕ) → 𝐴:ℕ–onto→𝑌) |
110 | | founiiun 42715 |
. . . . . 6
⊢ (𝐴:ℕ–onto→𝑌 → ∪ 𝑌 = ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
111 | 109, 110 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = ℕ) → ∪ 𝑌 =
∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
112 | | uniun 4864 |
. . . . . . . 8
⊢ ∪ (𝑌
∪ {∅}) = (∪ 𝑌 ∪ ∪
{∅}) |
113 | 15 | unisn 4861 |
. . . . . . . . 9
⊢ ∪ {∅} = ∅ |
114 | 113 | uneq2i 4094 |
. . . . . . . 8
⊢ (∪ 𝑌
∪ ∪ {∅}) = (∪
𝑌 ∪
∅) |
115 | | un0 4324 |
. . . . . . . 8
⊢ (∪ 𝑌
∪ ∅) = ∪ 𝑌 |
116 | 112, 114,
115 | 3eqtrri 2771 |
. . . . . . 7
⊢ ∪ 𝑌 =
∪ (𝑌 ∪ {∅}) |
117 | 116 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∪ 𝑌 =
∪ (𝑌 ∪ {∅})) |
118 | 24 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ⟶(𝑌 ∪ {∅})) |
119 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) |
120 | | isomenndlem.b |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
121 | 120 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊆ ℕ) |
122 | 52 | necon3bi 2970 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝐵 = ℕ → 𝐵 ≠ ℕ) |
123 | 122 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ≠ ℕ) |
124 | 121, 123 | jca 512 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ)) |
125 | | df-pss 3906 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ⊊ ℕ ↔ (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ)) |
126 | 124, 125 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊊ ℕ) |
127 | | pssnel 4404 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ⊊ ℕ →
∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) |
128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) |
129 | 128 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) |
130 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → 𝑛 ∈ ℕ) |
131 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → 𝑛 ∈ ℕ) |
132 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V) |
133 | 23 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V) → (𝐴‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
134 | 131, 132,
133 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → (𝐴‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
135 | 134 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → (𝐴‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
136 | 13 | ad2antll 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = ∅) |
137 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ∅ → 𝑦 = ∅) |
138 | 137 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ∅ → ∅ =
𝑦) |
139 | 138 | ad2antlr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → ∅ = 𝑦) |
140 | 135, 136,
139 | 3eqtrrd 2783 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → 𝑦 = (𝐴‘𝑛)) |
141 | 130, 140,
100 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
142 | 141 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
143 | 142 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
144 | 119, 78, 129, 143 | exlimimdd 2212 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
145 | 144 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
146 | | simplll 772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝜑) |
147 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ (𝑌 ∪ {∅})) |
148 | | elsni 4578 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
149 | 148 | con3i 154 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑦 = ∅ → ¬
𝑦 ∈
{∅}) |
150 | 149 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → ¬ 𝑦 ∈
{∅}) |
151 | | elunnel2 42582 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 ∈ {∅}) → 𝑦 ∈ 𝑌) |
152 | 147, 150,
151 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ 𝑌) |
153 | 152 | adantll 711 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ 𝑌) |
154 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝐹:𝐵–onto→𝑌) |
155 | | foelrni 6831 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐵–onto→𝑌 ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ 𝐵 (𝐹‘𝑛) = 𝑦) |
156 | 154, 73, 155 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ 𝐵 (𝐹‘𝑛) = 𝑦) |
157 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝜑 ∧ 𝑦 ∈ 𝑌) |
158 | 120 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → 𝑛 ∈ ℕ) |
159 | 158 | 3adant3 1131 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵 ∧ (𝐹‘𝑛) = 𝑦) → 𝑛 ∈ ℕ) |
160 | 158, 87, 133 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → (𝐴‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
161 | 160, 3 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → (𝐴‘𝑛) = (𝐹‘𝑛)) |
162 | 161 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵 ∧ (𝐹‘𝑛) = 𝑦) → (𝐴‘𝑛) = (𝐹‘𝑛)) |
163 | | simp3 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵 ∧ (𝐹‘𝑛) = 𝑦) → (𝐹‘𝑛) = 𝑦) |
164 | 162, 163 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵 ∧ (𝐹‘𝑛) = 𝑦) → 𝑦 = (𝐴‘𝑛)) |
165 | 159, 164,
100 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵 ∧ (𝐹‘𝑛) = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
166 | 165 | 3exp 1118 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑛 ∈ 𝐵 → ((𝐹‘𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)))) |
167 | 166 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑛 ∈ 𝐵 → ((𝐹‘𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)))) |
168 | 157, 78, 167 | rexlimd 3250 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (∃𝑛 ∈ 𝐵 (𝐹‘𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
169 | 156, 168 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
170 | 146, 153,
169 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
171 | 145, 170 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
172 | 171 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛)) |
173 | 118, 172 | jca 512 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
174 | | dffo3 6978 |
. . . . . . . 8
⊢ (𝐴:ℕ–onto→(𝑌 ∪ {∅}) ↔ (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴‘𝑛))) |
175 | 173, 174 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ–onto→(𝑌 ∪ {∅})) |
176 | | founiiun 42715 |
. . . . . . 7
⊢ (𝐴:ℕ–onto→(𝑌 ∪ {∅}) → ∪ (𝑌
∪ {∅}) = ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
177 | 175, 176 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∪ (𝑌
∪ {∅}) = ∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
178 | 117, 177 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∪ 𝑌 =
∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
179 | 111, 178 | pm2.61dan 810 |
. . . 4
⊢ (𝜑 → ∪ 𝑌 =
∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) |
180 | 179 | fveq2d 6778 |
. . 3
⊢ (𝜑 → (𝑂‘∪ 𝑌) = (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛))) |
181 | | uncom 4087 |
. . . . . . . . 9
⊢ ((ℕ
∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵)) |
182 | 181 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵))) |
183 | | undif 4415 |
. . . . . . . . 9
⊢ (𝐵 ⊆ ℕ ↔ (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ) |
184 | 120, 183 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ) |
185 | 182, 184 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = ℕ) |
186 | 185 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → ℕ = ((ℕ
∖ 𝐵) ∪ 𝐵)) |
187 | 186 | mpteq1d 5169 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))) = (𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) |
188 | 187 | fveq2d 6778 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛)))) =
(Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴‘𝑛))))) |
189 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑛𝜑 |
190 | | difexg 5251 |
. . . . . . 7
⊢ (ℕ
∈ V → (ℕ ∖ 𝐵) ∈ V) |
191 | 32, 190 | ax-mp 5 |
. . . . . 6
⊢ (ℕ
∖ 𝐵) ∈
V |
192 | 191 | a1i 11 |
. . . . 5
⊢ (𝜑 → (ℕ ∖ 𝐵) ∈ V) |
193 | 32 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ ∈
V) |
194 | 193, 120 | ssexd 5248 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
195 | | disjdifr 4406 |
. . . . . 6
⊢ ((ℕ
∖ 𝐵) ∩ 𝐵) = ∅ |
196 | 195 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((ℕ ∖ 𝐵) ∩ 𝐵) = ∅) |
197 | | simpl 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → 𝜑) |
198 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑛 ∈ (ℕ ∖ 𝐵) → 𝑛 ∈ ℕ) |
199 | 198 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → 𝑛 ∈ ℕ) |
200 | | isomenndlem.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
201 | 200 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
202 | 31 | ffvelrnda 6961 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ 𝒫 𝑋) |
203 | 201, 202 | ffvelrnd 6962 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑂‘(𝐴‘𝑛)) ∈ (0[,]+∞)) |
204 | 197, 199,
203 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴‘𝑛)) ∈ (0[,]+∞)) |
205 | 158, 203 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → (𝑂‘(𝐴‘𝑛)) ∈ (0[,]+∞)) |
206 | 189, 192,
194, 196, 204, 205 | sge0splitmpt 43949 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) =
((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) +𝑒
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛)))))) |
207 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))) = (𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))) |
208 | 205, 207 | fmptd 6988 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))):𝐵⟶(0[,]+∞)) |
209 | 194, 208 | sge0xrcl 43923 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛)))) ∈
ℝ*) |
210 | 209 | xaddid2d 42858 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) =
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) |
211 | 87 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) ∈ V) |
212 | 199, 211,
133 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴‘𝑛) = if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅)) |
213 | | eldifn 4062 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (ℕ ∖ 𝐵) → ¬ 𝑛 ∈ 𝐵) |
214 | 213 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → ¬ 𝑛 ∈ 𝐵) |
215 | 214 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛 ∈ 𝐵, (𝐹‘𝑛), ∅) = ∅) |
216 | 212, 215 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴‘𝑛) = ∅) |
217 | 216 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴‘𝑛)) = (𝑂‘∅)) |
218 | | isomenndlem.o0 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘∅) = 0) |
219 | 197, 218 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘∅) = 0) |
220 | 217, 219 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴‘𝑛)) = 0) |
221 | 220 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛))) = (𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)) |
222 | 221 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) =
(Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0))) |
223 | 189, 192 | sge0z 43913 |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)) = 0) |
224 | 222, 223 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) = 0) |
225 | 224 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 →
((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) +𝑒
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) = (0 +𝑒
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛)))))) |
226 | 200, 25 | feqresmpt 6838 |
. . . . . . 7
⊢ (𝜑 → (𝑂 ↾ 𝑌) = (𝑦 ∈ 𝑌 ↦ (𝑂‘𝑦))) |
227 | 226 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ 𝑌)) =
(Σ^‘(𝑦 ∈ 𝑌 ↦ (𝑂‘𝑦)))) |
228 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
229 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = (𝐴‘𝑛) → (𝑂‘𝑦) = (𝑂‘(𝐴‘𝑛))) |
230 | 161 | eqcomd 2744 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐵) → (𝐹‘𝑛) = (𝐴‘𝑛)) |
231 | 200 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
232 | 25 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝒫 𝑋) |
233 | 231, 232 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑌) → (𝑂‘𝑦) ∈ (0[,]+∞)) |
234 | 228, 189,
229, 194, 4, 230, 233 | sge0f1o 43920 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑦 ∈ 𝑌 ↦ (𝑂‘𝑦))) =
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) |
235 | | eqidd 2739 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛)))) =
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) |
236 | 227, 234,
235 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ 𝑌)) =
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) |
237 | 210, 225,
236 | 3eqtr4d 2788 |
. . . 4
⊢ (𝜑 →
((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴‘𝑛)))) +𝑒
(Σ^‘(𝑛 ∈ 𝐵 ↦ (𝑂‘(𝐴‘𝑛))))) =
(Σ^‘(𝑂 ↾ 𝑌))) |
238 | 188, 206,
237 | 3eqtrrd 2783 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ 𝑌)) =
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛))))) |
239 | 180, 238 | breq12d 5087 |
. 2
⊢ (𝜑 → ((𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌)) ↔ (𝑂‘∪
𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴‘𝑛)))))) |
240 | 49, 239 | mpbird 256 |
1
⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤
(Σ^‘(𝑂 ↾ 𝑌))) |