Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomenndlem Structured version   Visualization version   GIF version

Theorem isomenndlem 45331
Description: 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomenndlem.o (πœ‘ β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))
isomenndlem.o0 (πœ‘ β†’ (π‘‚β€˜βˆ…) = 0)
isomenndlem.y (πœ‘ β†’ π‘Œ βŠ† 𝒫 𝑋)
isomenndlem.subadd ((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))))
isomenndlem.b (πœ‘ β†’ 𝐡 βŠ† β„•)
isomenndlem.f (πœ‘ β†’ 𝐹:𝐡–1-1-ontoβ†’π‘Œ)
isomenndlem.a 𝐴 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
Assertion
Ref Expression
isomenndlem (πœ‘ β†’ (π‘‚β€˜βˆͺ π‘Œ) ≀ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)))
Distinct variable groups:   𝐴,π‘Ž,𝑛   𝐡,𝑛   𝑛,𝐹   𝑂,π‘Ž,𝑛   𝑋,π‘Ž   𝑛,π‘Œ   πœ‘,π‘Ž,𝑛
Allowed substitution hints:   𝐡(π‘Ž)   𝐹(π‘Ž)   𝑋(𝑛)   π‘Œ(π‘Ž)

Proof of Theorem isomenndlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (πœ‘ β†’ πœ‘)
2 iftrue 4534 . . . . . . . . 9 (𝑛 ∈ 𝐡 β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = (πΉβ€˜π‘›))
32adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = (πΉβ€˜π‘›))
4 isomenndlem.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐡–1-1-ontoβ†’π‘Œ)
5 f1of 6833 . . . . . . . . . . 11 (𝐹:𝐡–1-1-ontoβ†’π‘Œ β†’ 𝐹:π΅βŸΆπ‘Œ)
64, 5syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝐹:π΅βŸΆπ‘Œ)
7 ssun1 4172 . . . . . . . . . . 11 π‘Œ βŠ† (π‘Œ βˆͺ {βˆ…})
87a1i 11 . . . . . . . . . 10 (πœ‘ β†’ π‘Œ βŠ† (π‘Œ βˆͺ {βˆ…}))
96, 8fssd 6735 . . . . . . . . 9 (πœ‘ β†’ 𝐹:𝐡⟢(π‘Œ βˆͺ {βˆ…}))
109ffvelcdmda 7086 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ (πΉβ€˜π‘›) ∈ (π‘Œ βˆͺ {βˆ…}))
113, 10eqeltrd 2833 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ (π‘Œ βˆͺ {βˆ…}))
1211adantlr 713 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ (π‘Œ βˆͺ {βˆ…}))
13 iffalse 4537 . . . . . . . . 9 (Β¬ 𝑛 ∈ 𝐡 β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = βˆ…)
1413adantl 482 . . . . . . . 8 ((πœ‘ ∧ Β¬ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = βˆ…)
15 0ex 5307 . . . . . . . . . . 11 βˆ… ∈ V
1615snid 4664 . . . . . . . . . 10 βˆ… ∈ {βˆ…}
17 elun2 4177 . . . . . . . . . 10 (βˆ… ∈ {βˆ…} β†’ βˆ… ∈ (π‘Œ βˆͺ {βˆ…}))
1816, 17ax-mp 5 . . . . . . . . 9 βˆ… ∈ (π‘Œ βˆͺ {βˆ…})
1918a1i 11 . . . . . . . 8 ((πœ‘ ∧ Β¬ 𝑛 ∈ 𝐡) β†’ βˆ… ∈ (π‘Œ βˆͺ {βˆ…}))
2014, 19eqeltrd 2833 . . . . . . 7 ((πœ‘ ∧ Β¬ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ (π‘Œ βˆͺ {βˆ…}))
2120adantlr 713 . . . . . 6 (((πœ‘ ∧ 𝑛 ∈ β„•) ∧ Β¬ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ (π‘Œ βˆͺ {βˆ…}))
2212, 21pm2.61dan 811 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ (π‘Œ βˆͺ {βˆ…}))
23 isomenndlem.a . . . . 5 𝐴 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
2422, 23fmptd 7115 . . . 4 (πœ‘ β†’ 𝐴:β„•βŸΆ(π‘Œ βˆͺ {βˆ…}))
25 isomenndlem.y . . . . 5 (πœ‘ β†’ π‘Œ βŠ† 𝒫 𝑋)
26 0elpw 5354 . . . . . . 7 βˆ… ∈ 𝒫 𝑋
27 snssi 4811 . . . . . . 7 (βˆ… ∈ 𝒫 𝑋 β†’ {βˆ…} βŠ† 𝒫 𝑋)
2826, 27ax-mp 5 . . . . . 6 {βˆ…} βŠ† 𝒫 𝑋
2928a1i 11 . . . . 5 (πœ‘ β†’ {βˆ…} βŠ† 𝒫 𝑋)
3025, 29unssd 4186 . . . 4 (πœ‘ β†’ (π‘Œ βˆͺ {βˆ…}) βŠ† 𝒫 𝑋)
3124, 30fssd 6735 . . 3 (πœ‘ β†’ 𝐴:β„•βŸΆπ’« 𝑋)
32 nnex 12220 . . . . . 6 β„• ∈ V
3332mptex 7227 . . . . 5 (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…)) ∈ V
3423, 33eqeltri 2829 . . . 4 𝐴 ∈ V
35 feq1 6698 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž:β„•βŸΆπ’« 𝑋 ↔ 𝐴:β„•βŸΆπ’« 𝑋))
3635anbi2d 629 . . . . 5 (π‘Ž = 𝐴 β†’ ((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) ↔ (πœ‘ ∧ 𝐴:β„•βŸΆπ’« 𝑋)))
37 fveq1 6890 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (π‘Žβ€˜π‘›) = (π΄β€˜π‘›))
3837iuneq2d 5026 . . . . . . 7 (π‘Ž = 𝐴 β†’ βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›) = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
3938fveq2d 6895 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) = (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)))
40 simpl 483 . . . . . . . . . 10 ((π‘Ž = 𝐴 ∧ 𝑛 ∈ β„•) β†’ π‘Ž = 𝐴)
4140fveq1d 6893 . . . . . . . . 9 ((π‘Ž = 𝐴 ∧ 𝑛 ∈ β„•) β†’ (π‘Žβ€˜π‘›) = (π΄β€˜π‘›))
4241fveq2d 6895 . . . . . . . 8 ((π‘Ž = 𝐴 ∧ 𝑛 ∈ β„•) β†’ (π‘‚β€˜(π‘Žβ€˜π‘›)) = (π‘‚β€˜(π΄β€˜π‘›)))
4342mpteq2dva 5248 . . . . . . 7 (π‘Ž = 𝐴 β†’ (𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›))) = (𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›))))
4443fveq2d 6895 . . . . . 6 (π‘Ž = 𝐴 β†’ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))) = (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
4539, 44breq12d 5161 . . . . 5 (π‘Ž = 𝐴 β†’ ((π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))) ↔ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›))))))
4636, 45imbi12d 344 . . . 4 (π‘Ž = 𝐴 β†’ (((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›))))) ↔ ((πœ‘ ∧ 𝐴:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))))))
47 isomenndlem.subadd . . . 4 ((πœ‘ ∧ π‘Ž:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π‘Žβ€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π‘Žβ€˜π‘›)))))
4834, 46, 47vtocl 3549 . . 3 ((πœ‘ ∧ 𝐴:β„•βŸΆπ’« 𝑋) β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
491, 31, 48syl2anc 584 . 2 (πœ‘ β†’ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
506ad2antrr 724 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ β„•) β†’ 𝐹:π΅βŸΆπ‘Œ)
51 simpr 485 . . . . . . . . . . . . 13 ((𝐡 = β„• ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•)
52 id 22 . . . . . . . . . . . . . . 15 (𝐡 = β„• β†’ 𝐡 = β„•)
5352eqcomd 2738 . . . . . . . . . . . . . 14 (𝐡 = β„• β†’ β„• = 𝐡)
5453adantr 481 . . . . . . . . . . . . 13 ((𝐡 = β„• ∧ 𝑛 ∈ β„•) β†’ β„• = 𝐡)
5551, 54eleqtrd 2835 . . . . . . . . . . . 12 ((𝐡 = β„• ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ 𝐡)
5655adantll 712 . . . . . . . . . . 11 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ 𝐡)
5750, 56ffvelcdmd 7087 . . . . . . . . . 10 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ β„•) β†’ (πΉβ€˜π‘›) ∈ π‘Œ)
58 eqid 2732 . . . . . . . . . 10 (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)) = (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›))
5957, 58fmptd 7115 . . . . . . . . 9 ((πœ‘ ∧ 𝐡 = β„•) β†’ (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)):β„•βŸΆπ‘Œ)
6023a1i 11 . . . . . . . . . . . 12 (𝐡 = β„• β†’ 𝐴 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…)))
6155iftrued 4536 . . . . . . . . . . . . 13 ((𝐡 = β„• ∧ 𝑛 ∈ β„•) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = (πΉβ€˜π‘›))
6261mpteq2dva 5248 . . . . . . . . . . . 12 (𝐡 = β„• β†’ (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…)) = (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)))
6360, 62eqtrd 2772 . . . . . . . . . . 11 (𝐡 = β„• β†’ 𝐴 = (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)))
6463feq1d 6702 . . . . . . . . . 10 (𝐡 = β„• β†’ (𝐴:β„•βŸΆπ‘Œ ↔ (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)):β„•βŸΆπ‘Œ))
6564adantl 482 . . . . . . . . 9 ((πœ‘ ∧ 𝐡 = β„•) β†’ (𝐴:β„•βŸΆπ‘Œ ↔ (𝑛 ∈ β„• ↦ (πΉβ€˜π‘›)):β„•βŸΆπ‘Œ))
6659, 65mpbird 256 . . . . . . . 8 ((πœ‘ ∧ 𝐡 = β„•) β†’ 𝐴:β„•βŸΆπ‘Œ)
67 f1ofo 6840 . . . . . . . . . . . . . . . 16 (𝐹:𝐡–1-1-ontoβ†’π‘Œ β†’ 𝐹:𝐡–ontoβ†’π‘Œ)
684, 67syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹:𝐡–ontoβ†’π‘Œ)
69 dffo3 7103 . . . . . . . . . . . . . . 15 (𝐹:𝐡–ontoβ†’π‘Œ ↔ (𝐹:π΅βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›)))
7068, 69sylib 217 . . . . . . . . . . . . . 14 (πœ‘ β†’ (𝐹:π΅βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›)))
7170simprd 496 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›))
7271adantr 481 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›))
73 simpr 485 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ 𝑦 ∈ π‘Œ)
74 rspa 3245 . . . . . . . . . . . 12 ((βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›) ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›))
7572, 73, 74syl2anc 584 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›))
7675adantlr 713 . . . . . . . . . 10 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›))
77 nfv 1917 . . . . . . . . . . . 12 Ⅎ𝑛(πœ‘ ∧ 𝐡 = β„•)
78 nfre1 3282 . . . . . . . . . . . 12 β„²π‘›βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)
79 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ 𝑛 ∈ 𝐡)
80 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ 𝐡 = β„•)
8179, 80eleqtrd 2835 . . . . . . . . . . . . . . . 16 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ 𝑛 ∈ β„•)
8281adantll 712 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ 𝐡) β†’ 𝑛 ∈ β„•)
83823adant3 1132 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ 𝑛 ∈ β„•)
8460fveq1d 6893 . . . . . . . . . . . . . . . . 17 (𝐡 = β„• β†’ (π΄β€˜π‘›) = ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›))
85843ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ (π΄β€˜π‘›) = ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›))
86 fvex 6904 . . . . . . . . . . . . . . . . . . . . 21 (πΉβ€˜π‘›) ∈ V
8786, 15ifex 4578 . . . . . . . . . . . . . . . . . . . 20 if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V)
89 eqid 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…)) = (𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
9089fvmpt2 7009 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ β„• ∧ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V) β†’ ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
9181, 88, 90syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
922adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = (πΉβ€˜π‘›))
9391, 92eqtrd 2772 . . . . . . . . . . . . . . . . 17 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡) β†’ ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›) = (πΉβ€˜π‘›))
94933adant3 1132 . . . . . . . . . . . . . . . 16 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ ((𝑛 ∈ β„• ↦ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))β€˜π‘›) = (πΉβ€˜π‘›))
95 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = (πΉβ€˜π‘›) β†’ 𝑦 = (πΉβ€˜π‘›))
9695eqcomd 2738 . . . . . . . . . . . . . . . . 17 (𝑦 = (πΉβ€˜π‘›) β†’ (πΉβ€˜π‘›) = 𝑦)
97963ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ (πΉβ€˜π‘›) = 𝑦)
9885, 94, 973eqtrrd 2777 . . . . . . . . . . . . . . 15 ((𝐡 = β„• ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ 𝑦 = (π΄β€˜π‘›))
99983adant1l 1176 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ 𝑦 = (π΄β€˜π‘›))
100 rspe 3246 . . . . . . . . . . . . . 14 ((𝑛 ∈ β„• ∧ 𝑦 = (π΄β€˜π‘›)) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
10183, 99, 100syl2anc 584 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑛 ∈ 𝐡 ∧ 𝑦 = (πΉβ€˜π‘›)) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
1021013exp 1119 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝐡 = β„•) β†’ (𝑛 ∈ 𝐡 β†’ (𝑦 = (πΉβ€˜π‘›) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))))
10377, 78, 102rexlimd 3263 . . . . . . . . . . 11 ((πœ‘ ∧ 𝐡 = β„•) β†’ (βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
104103adantr 481 . . . . . . . . . 10 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑦 ∈ π‘Œ) β†’ (βˆƒπ‘› ∈ 𝐡 𝑦 = (πΉβ€˜π‘›) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
10576, 104mpd 15 . . . . . . . . 9 (((πœ‘ ∧ 𝐡 = β„•) ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
106105ralrimiva 3146 . . . . . . . 8 ((πœ‘ ∧ 𝐡 = β„•) β†’ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
10766, 106jca 512 . . . . . . 7 ((πœ‘ ∧ 𝐡 = β„•) β†’ (𝐴:β„•βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
108 dffo3 7103 . . . . . . 7 (𝐴:ℕ–ontoβ†’π‘Œ ↔ (𝐴:β„•βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ π‘Œ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
109107, 108sylibr 233 . . . . . 6 ((πœ‘ ∧ 𝐡 = β„•) β†’ 𝐴:ℕ–ontoβ†’π‘Œ)
110 founiiun 43963 . . . . . 6 (𝐴:ℕ–ontoβ†’π‘Œ β†’ βˆͺ π‘Œ = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
111109, 110syl 17 . . . . 5 ((πœ‘ ∧ 𝐡 = β„•) β†’ βˆͺ π‘Œ = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
112 uniun 4934 . . . . . . . 8 βˆͺ (π‘Œ βˆͺ {βˆ…}) = (βˆͺ π‘Œ βˆͺ βˆͺ {βˆ…})
11315unisn 4930 . . . . . . . . 9 βˆͺ {βˆ…} = βˆ…
114113uneq2i 4160 . . . . . . . 8 (βˆͺ π‘Œ βˆͺ βˆͺ {βˆ…}) = (βˆͺ π‘Œ βˆͺ βˆ…)
115 un0 4390 . . . . . . . 8 (βˆͺ π‘Œ βˆͺ βˆ…) = βˆͺ π‘Œ
116112, 114, 1153eqtrri 2765 . . . . . . 7 βˆͺ π‘Œ = βˆͺ (π‘Œ βˆͺ {βˆ…})
117116a1i 11 . . . . . 6 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ βˆͺ π‘Œ = βˆͺ (π‘Œ βˆͺ {βˆ…}))
11824adantr 481 . . . . . . . . 9 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ 𝐴:β„•βŸΆ(π‘Œ βˆͺ {βˆ…}))
119 nfv 1917 . . . . . . . . . . . . 13 Ⅎ𝑛((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 = βˆ…)
120 isomenndlem.b . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐡 βŠ† β„•)
121120adantr 481 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ 𝐡 βŠ† β„•)
12252necon3bi 2967 . . . . . . . . . . . . . . . . . 18 (Β¬ 𝐡 = β„• β†’ 𝐡 β‰  β„•)
123122adantl 482 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ 𝐡 β‰  β„•)
124121, 123jca 512 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ (𝐡 βŠ† β„• ∧ 𝐡 β‰  β„•))
125 df-pss 3967 . . . . . . . . . . . . . . . 16 (𝐡 ⊊ β„• ↔ (𝐡 βŠ† β„• ∧ 𝐡 β‰  β„•))
126124, 125sylibr 233 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ 𝐡 ⊊ β„•)
127 pssnel 4470 . . . . . . . . . . . . . . 15 (𝐡 ⊊ β„• β†’ βˆƒπ‘›(𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡))
128126, 127syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ βˆƒπ‘›(𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡))
129128adantr 481 . . . . . . . . . . . . 13 (((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 = βˆ…) β†’ βˆƒπ‘›(𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡))
130 simprl 769 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ 𝑛 ∈ β„•)
131 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ 𝑛 ∈ β„•)
13287a1i 11 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V)
13323fvmpt2 7009 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ β„• ∧ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V) β†’ (π΄β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
134131, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ (π΄β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
135134adantlr 713 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ (π΄β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
13613ad2antll 727 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = βˆ…)
137 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = βˆ… β†’ 𝑦 = βˆ…)
138137eqcomd 2738 . . . . . . . . . . . . . . . . . 18 (𝑦 = βˆ… β†’ βˆ… = 𝑦)
139138ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ βˆ… = 𝑦)
140135, 136, 1393eqtrrd 2777 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ 𝑦 = (π΄β€˜π‘›))
141130, 140, 100syl2anc 584 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ 𝑦 = βˆ…) ∧ (𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡)) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
142141ex 413 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 = βˆ…) β†’ ((𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
143142adantlr 713 . . . . . . . . . . . . 13 (((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 = βˆ…) β†’ ((𝑛 ∈ β„• ∧ Β¬ 𝑛 ∈ 𝐡) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
144119, 78, 129, 143exlimimdd 2212 . . . . . . . . . . . 12 (((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 = βˆ…) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
145144adantlr 713 . . . . . . . . . . 11 ((((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…})) ∧ 𝑦 = βˆ…) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
146 simplll 773 . . . . . . . . . . . 12 ((((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…})) ∧ Β¬ 𝑦 = βˆ…) β†’ πœ‘)
147 simpl 483 . . . . . . . . . . . . . 14 ((𝑦 ∈ (π‘Œ βˆͺ {βˆ…}) ∧ Β¬ 𝑦 = βˆ…) β†’ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…}))
148 elsni 4645 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {βˆ…} β†’ 𝑦 = βˆ…)
149148con3i 154 . . . . . . . . . . . . . . 15 (Β¬ 𝑦 = βˆ… β†’ Β¬ 𝑦 ∈ {βˆ…})
150149adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ (π‘Œ βˆͺ {βˆ…}) ∧ Β¬ 𝑦 = βˆ…) β†’ Β¬ 𝑦 ∈ {βˆ…})
151 elunnel2 4150 . . . . . . . . . . . . . 14 ((𝑦 ∈ (π‘Œ βˆͺ {βˆ…}) ∧ Β¬ 𝑦 ∈ {βˆ…}) β†’ 𝑦 ∈ π‘Œ)
152147, 150, 151syl2anc 584 . . . . . . . . . . . . 13 ((𝑦 ∈ (π‘Œ βˆͺ {βˆ…}) ∧ Β¬ 𝑦 = βˆ…) β†’ 𝑦 ∈ π‘Œ)
153152adantll 712 . . . . . . . . . . . 12 ((((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…})) ∧ Β¬ 𝑦 = βˆ…) β†’ 𝑦 ∈ π‘Œ)
15468adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ 𝐹:𝐡–ontoβ†’π‘Œ)
155 foelcdmi 6953 . . . . . . . . . . . . . 14 ((𝐹:𝐡–ontoβ†’π‘Œ ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ 𝐡 (πΉβ€˜π‘›) = 𝑦)
156154, 73, 155syl2anc 584 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ 𝐡 (πΉβ€˜π‘›) = 𝑦)
157 nfv 1917 . . . . . . . . . . . . . 14 Ⅎ𝑛(πœ‘ ∧ 𝑦 ∈ π‘Œ)
158120sselda 3982 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ 𝑛 ∈ β„•)
1591583adant3 1132 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑛 ∈ 𝐡 ∧ (πΉβ€˜π‘›) = 𝑦) β†’ 𝑛 ∈ β„•)
160158, 87, 133sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ (π΄β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
161160, 3eqtrd 2772 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ (π΄β€˜π‘›) = (πΉβ€˜π‘›))
1621613adant3 1132 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑛 ∈ 𝐡 ∧ (πΉβ€˜π‘›) = 𝑦) β†’ (π΄β€˜π‘›) = (πΉβ€˜π‘›))
163 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑛 ∈ 𝐡 ∧ (πΉβ€˜π‘›) = 𝑦) β†’ (πΉβ€˜π‘›) = 𝑦)
164162, 163eqtr2d 2773 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑛 ∈ 𝐡 ∧ (πΉβ€˜π‘›) = 𝑦) β†’ 𝑦 = (π΄β€˜π‘›))
165159, 164, 100syl2anc 584 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑛 ∈ 𝐡 ∧ (πΉβ€˜π‘›) = 𝑦) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
1661653exp 1119 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (𝑛 ∈ 𝐡 β†’ ((πΉβ€˜π‘›) = 𝑦 β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))))
167166adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ (𝑛 ∈ 𝐡 β†’ ((πΉβ€˜π‘›) = 𝑦 β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))))
168157, 78, 167rexlimd 3263 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ (βˆƒπ‘› ∈ 𝐡 (πΉβ€˜π‘›) = 𝑦 β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
169156, 168mpd 15 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
170146, 153, 169syl2anc 584 . . . . . . . . . . 11 ((((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…})) ∧ Β¬ 𝑦 = βˆ…) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
171145, 170pm2.61dan 811 . . . . . . . . . 10 (((πœ‘ ∧ Β¬ 𝐡 = β„•) ∧ 𝑦 ∈ (π‘Œ βˆͺ {βˆ…})) β†’ βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
172171ralrimiva 3146 . . . . . . . . 9 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ βˆ€π‘¦ ∈ (π‘Œ βˆͺ {βˆ…})βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›))
173118, 172jca 512 . . . . . . . 8 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ (𝐴:β„•βŸΆ(π‘Œ βˆͺ {βˆ…}) ∧ βˆ€π‘¦ ∈ (π‘Œ βˆͺ {βˆ…})βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
174 dffo3 7103 . . . . . . . 8 (𝐴:ℕ–ontoβ†’(π‘Œ βˆͺ {βˆ…}) ↔ (𝐴:β„•βŸΆ(π‘Œ βˆͺ {βˆ…}) ∧ βˆ€π‘¦ ∈ (π‘Œ βˆͺ {βˆ…})βˆƒπ‘› ∈ β„• 𝑦 = (π΄β€˜π‘›)))
175173, 174sylibr 233 . . . . . . 7 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ 𝐴:ℕ–ontoβ†’(π‘Œ βˆͺ {βˆ…}))
176 founiiun 43963 . . . . . . 7 (𝐴:ℕ–ontoβ†’(π‘Œ βˆͺ {βˆ…}) β†’ βˆͺ (π‘Œ βˆͺ {βˆ…}) = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
177175, 176syl 17 . . . . . 6 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ βˆͺ (π‘Œ βˆͺ {βˆ…}) = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
178117, 177eqtrd 2772 . . . . 5 ((πœ‘ ∧ Β¬ 𝐡 = β„•) β†’ βˆͺ π‘Œ = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
179111, 178pm2.61dan 811 . . . 4 (πœ‘ β†’ βˆͺ π‘Œ = βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›))
180179fveq2d 6895 . . 3 (πœ‘ β†’ (π‘‚β€˜βˆͺ π‘Œ) = (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)))
181 uncom 4153 . . . . . . . . 9 ((β„• βˆ– 𝐡) βˆͺ 𝐡) = (𝐡 βˆͺ (β„• βˆ– 𝐡))
182181a1i 11 . . . . . . . 8 (πœ‘ β†’ ((β„• βˆ– 𝐡) βˆͺ 𝐡) = (𝐡 βˆͺ (β„• βˆ– 𝐡)))
183 undif 4481 . . . . . . . . 9 (𝐡 βŠ† β„• ↔ (𝐡 βˆͺ (β„• βˆ– 𝐡)) = β„•)
184120, 183sylib 217 . . . . . . . 8 (πœ‘ β†’ (𝐡 βˆͺ (β„• βˆ– 𝐡)) = β„•)
185182, 184eqtrd 2772 . . . . . . 7 (πœ‘ β†’ ((β„• βˆ– 𝐡) βˆͺ 𝐡) = β„•)
186185eqcomd 2738 . . . . . 6 (πœ‘ β†’ β„• = ((β„• βˆ– 𝐡) βˆͺ 𝐡))
187186mpteq1d 5243 . . . . 5 (πœ‘ β†’ (𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›))) = (𝑛 ∈ ((β„• βˆ– 𝐡) βˆͺ 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›))))
188187fveq2d 6895 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))) = (Ξ£^β€˜(𝑛 ∈ ((β„• βˆ– 𝐡) βˆͺ 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
189 nfv 1917 . . . . 5 β„²π‘›πœ‘
190 difexg 5327 . . . . . . 7 (β„• ∈ V β†’ (β„• βˆ– 𝐡) ∈ V)
19132, 190ax-mp 5 . . . . . 6 (β„• βˆ– 𝐡) ∈ V
192191a1i 11 . . . . 5 (πœ‘ β†’ (β„• βˆ– 𝐡) ∈ V)
19332a1i 11 . . . . . 6 (πœ‘ β†’ β„• ∈ V)
194193, 120ssexd 5324 . . . . 5 (πœ‘ β†’ 𝐡 ∈ V)
195 disjdifr 4472 . . . . . 6 ((β„• βˆ– 𝐡) ∩ 𝐡) = βˆ…
196195a1i 11 . . . . 5 (πœ‘ β†’ ((β„• βˆ– 𝐡) ∩ 𝐡) = βˆ…)
197 simpl 483 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ πœ‘)
198 eldifi 4126 . . . . . . 7 (𝑛 ∈ (β„• βˆ– 𝐡) β†’ 𝑛 ∈ β„•)
199198adantl 482 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ 𝑛 ∈ β„•)
200 isomenndlem.o . . . . . . . 8 (πœ‘ β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))
201200adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))
20231ffvelcdmda 7086 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π΄β€˜π‘›) ∈ 𝒫 𝑋)
203201, 202ffvelcdmd 7087 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ (π‘‚β€˜(π΄β€˜π‘›)) ∈ (0[,]+∞))
204197, 199, 203syl2anc 584 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π‘‚β€˜(π΄β€˜π‘›)) ∈ (0[,]+∞))
205158, 203syldan 591 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ (π‘‚β€˜(π΄β€˜π‘›)) ∈ (0[,]+∞))
206189, 192, 194, 196, 204, 205sge0splitmpt 45212 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ ((β„• βˆ– 𝐡) βˆͺ 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) = ((Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) +𝑒 (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))))))
207 eqid 2732 . . . . . . . 8 (𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))) = (𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))
208205, 207fmptd 7115 . . . . . . 7 (πœ‘ β†’ (𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))):𝐡⟢(0[,]+∞))
209194, 208sge0xrcl 45186 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))) ∈ ℝ*)
210209xaddlidd 44114 . . . . 5 (πœ‘ β†’ (0 +𝑒 (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))))) = (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
21187a1i 11 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) ∈ V)
212199, 211, 133syl2anc 584 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π΄β€˜π‘›) = if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…))
213 eldifn 4127 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„• βˆ– 𝐡) β†’ Β¬ 𝑛 ∈ 𝐡)
214213adantl 482 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ Β¬ 𝑛 ∈ 𝐡)
215214iffalsed 4539 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ if(𝑛 ∈ 𝐡, (πΉβ€˜π‘›), βˆ…) = βˆ…)
216212, 215eqtrd 2772 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π΄β€˜π‘›) = βˆ…)
217216fveq2d 6895 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π‘‚β€˜(π΄β€˜π‘›)) = (π‘‚β€˜βˆ…))
218 isomenndlem.o0 . . . . . . . . . . 11 (πœ‘ β†’ (π‘‚β€˜βˆ…) = 0)
219197, 218syl 17 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π‘‚β€˜βˆ…) = 0)
220217, 219eqtrd 2772 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„• βˆ– 𝐡)) β†’ (π‘‚β€˜(π΄β€˜π‘›)) = 0)
221220mpteq2dva 5248 . . . . . . . 8 (πœ‘ β†’ (𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›))) = (𝑛 ∈ (β„• βˆ– 𝐡) ↦ 0))
222221fveq2d 6895 . . . . . . 7 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) = (Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ 0)))
223189, 192sge0z 45176 . . . . . . 7 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ 0)) = 0)
224222, 223eqtrd 2772 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) = 0)
225224oveq1d 7426 . . . . 5 (πœ‘ β†’ ((Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) +𝑒 (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))))) = (0 +𝑒 (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))))))
226200, 25feqresmpt 6961 . . . . . . 7 (πœ‘ β†’ (𝑂 β†Ύ π‘Œ) = (𝑦 ∈ π‘Œ ↦ (π‘‚β€˜π‘¦)))
227226fveq2d 6895 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)) = (Ξ£^β€˜(𝑦 ∈ π‘Œ ↦ (π‘‚β€˜π‘¦))))
228 nfv 1917 . . . . . . 7 β„²π‘¦πœ‘
229 fveq2 6891 . . . . . . 7 (𝑦 = (π΄β€˜π‘›) β†’ (π‘‚β€˜π‘¦) = (π‘‚β€˜(π΄β€˜π‘›)))
230161eqcomd 2738 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝐡) β†’ (πΉβ€˜π‘›) = (π΄β€˜π‘›))
231200adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ 𝑂:𝒫 π‘‹βŸΆ(0[,]+∞))
23225sselda 3982 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ 𝑦 ∈ 𝒫 𝑋)
233231, 232ffvelcdmd 7087 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ π‘Œ) β†’ (π‘‚β€˜π‘¦) ∈ (0[,]+∞))
234228, 189, 229, 194, 4, 230, 233sge0f1o 45183 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑦 ∈ π‘Œ ↦ (π‘‚β€˜π‘¦))) = (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
235 eqidd 2733 . . . . . 6 (πœ‘ β†’ (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))) = (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
236227, 234, 2353eqtrd 2776 . . . . 5 (πœ‘ β†’ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)) = (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
237210, 225, 2363eqtr4d 2782 . . . 4 (πœ‘ β†’ ((Ξ£^β€˜(𝑛 ∈ (β„• βˆ– 𝐡) ↦ (π‘‚β€˜(π΄β€˜π‘›)))) +𝑒 (Ξ£^β€˜(𝑛 ∈ 𝐡 ↦ (π‘‚β€˜(π΄β€˜π‘›))))) = (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)))
238188, 206, 2373eqtrrd 2777 . . 3 (πœ‘ β†’ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)) = (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›)))))
239180, 238breq12d 5161 . 2 (πœ‘ β†’ ((π‘‚β€˜βˆͺ π‘Œ) ≀ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)) ↔ (π‘‚β€˜βˆͺ 𝑛 ∈ β„• (π΄β€˜π‘›)) ≀ (Ξ£^β€˜(𝑛 ∈ β„• ↦ (π‘‚β€˜(π΄β€˜π‘›))))))
24049, 239mpbird 256 1 (πœ‘ β†’ (π‘‚β€˜βˆͺ π‘Œ) ≀ (Ξ£^β€˜(𝑂 β†Ύ π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βˆ– cdif 3945   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948   ⊊ wpss 3949  βˆ…c0 4322  ifcif 4528  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908  βˆͺ ciun 4997   class class class wbr 5148   ↦ cmpt 5231   β†Ύ cres 5678  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411  0cc0 11112  +∞cpnf 11247   ≀ cle 11251  β„•cn 12214   +𝑒 cxad 13092  [,]cicc 13329  Ξ£^csumge0 45163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-xadd 13095  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-sumge0 45164
This theorem is referenced by:  isomennd  45332
  Copyright terms: Public domain W3C validator