Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomenndlem Structured version   Visualization version   GIF version

Theorem isomenndlem 43958
Description: 𝑂 is sub-additive w.r.t. countable indexed union, implies that 𝑂 is sub-additive w.r.t. countable union. Thus, the definition of Outer Measure can be given using an indexed union. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomenndlem.o (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
isomenndlem.o0 (𝜑 → (𝑂‘∅) = 0)
isomenndlem.y (𝜑𝑌 ⊆ 𝒫 𝑋)
isomenndlem.subadd ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
isomenndlem.b (𝜑𝐵 ⊆ ℕ)
isomenndlem.f (𝜑𝐹:𝐵1-1-onto𝑌)
isomenndlem.a 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
Assertion
Ref Expression
isomenndlem (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑛   𝐵,𝑛   𝑛,𝐹   𝑂,𝑎,𝑛   𝑋,𝑎   𝑛,𝑌   𝜑,𝑎,𝑛
Allowed substitution hints:   𝐵(𝑎)   𝐹(𝑎)   𝑋(𝑛)   𝑌(𝑎)

Proof of Theorem isomenndlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝜑𝜑)
2 iftrue 4462 . . . . . . . . 9 (𝑛𝐵 → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
32adantl 481 . . . . . . . 8 ((𝜑𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
4 isomenndlem.f . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑌)
5 f1of 6700 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑌𝐹:𝐵𝑌)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑌)
7 ssun1 4102 . . . . . . . . . . 11 𝑌 ⊆ (𝑌 ∪ {∅})
87a1i 11 . . . . . . . . . 10 (𝜑𝑌 ⊆ (𝑌 ∪ {∅}))
96, 8fssd 6602 . . . . . . . . 9 (𝜑𝐹:𝐵⟶(𝑌 ∪ {∅}))
109ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑛𝐵) → (𝐹𝑛) ∈ (𝑌 ∪ {∅}))
113, 10eqeltrd 2839 . . . . . . 7 ((𝜑𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
1211adantlr 711 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
13 iffalse 4465 . . . . . . . . 9 𝑛𝐵 → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
1413adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
15 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
1615snid 4594 . . . . . . . . . 10 ∅ ∈ {∅}
17 elun2 4107 . . . . . . . . . 10 (∅ ∈ {∅} → ∅ ∈ (𝑌 ∪ {∅}))
1816, 17ax-mp 5 . . . . . . . . 9 ∅ ∈ (𝑌 ∪ {∅})
1918a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑛𝐵) → ∅ ∈ (𝑌 ∪ {∅}))
2014, 19eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
2120adantlr 711 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
2212, 21pm2.61dan 809 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ (𝑌 ∪ {∅}))
23 isomenndlem.a . . . . 5 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
2422, 23fmptd 6970 . . . 4 (𝜑𝐴:ℕ⟶(𝑌 ∪ {∅}))
25 isomenndlem.y . . . . 5 (𝜑𝑌 ⊆ 𝒫 𝑋)
26 0elpw 5273 . . . . . . 7 ∅ ∈ 𝒫 𝑋
27 snssi 4738 . . . . . . 7 (∅ ∈ 𝒫 𝑋 → {∅} ⊆ 𝒫 𝑋)
2826, 27ax-mp 5 . . . . . 6 {∅} ⊆ 𝒫 𝑋
2928a1i 11 . . . . 5 (𝜑 → {∅} ⊆ 𝒫 𝑋)
3025, 29unssd 4116 . . . 4 (𝜑 → (𝑌 ∪ {∅}) ⊆ 𝒫 𝑋)
3124, 30fssd 6602 . . 3 (𝜑𝐴:ℕ⟶𝒫 𝑋)
32 nnex 11909 . . . . . 6 ℕ ∈ V
3332mptex 7081 . . . . 5 (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) ∈ V
3423, 33eqeltri 2835 . . . 4 𝐴 ∈ V
35 feq1 6565 . . . . . 6 (𝑎 = 𝐴 → (𝑎:ℕ⟶𝒫 𝑋𝐴:ℕ⟶𝒫 𝑋))
3635anbi2d 628 . . . . 5 (𝑎 = 𝐴 → ((𝜑𝑎:ℕ⟶𝒫 𝑋) ↔ (𝜑𝐴:ℕ⟶𝒫 𝑋)))
37 fveq1 6755 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑛) = (𝐴𝑛))
3837iuneq2d 4950 . . . . . . 7 (𝑎 = 𝐴 𝑛 ∈ ℕ (𝑎𝑛) = 𝑛 ∈ ℕ (𝐴𝑛))
3938fveq2d 6760 . . . . . 6 (𝑎 = 𝐴 → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) = (𝑂 𝑛 ∈ ℕ (𝐴𝑛)))
40 simpl 482 . . . . . . . . . 10 ((𝑎 = 𝐴𝑛 ∈ ℕ) → 𝑎 = 𝐴)
4140fveq1d 6758 . . . . . . . . 9 ((𝑎 = 𝐴𝑛 ∈ ℕ) → (𝑎𝑛) = (𝐴𝑛))
4241fveq2d 6760 . . . . . . . 8 ((𝑎 = 𝐴𝑛 ∈ ℕ) → (𝑂‘(𝑎𝑛)) = (𝑂‘(𝐴𝑛)))
4342mpteq2dva 5170 . . . . . . 7 (𝑎 = 𝐴 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛))) = (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))
4443fveq2d 6760 . . . . . 6 (𝑎 = 𝐴 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
4539, 44breq12d 5083 . . . . 5 (𝑎 = 𝐴 → ((𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))) ↔ (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))))
4636, 45imbi12d 344 . . . 4 (𝑎 = 𝐴 → (((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛))))) ↔ ((𝜑𝐴:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))))
47 isomenndlem.subadd . . . 4 ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
4834, 46, 47vtocl 3488 . . 3 ((𝜑𝐴:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
491, 31, 48syl2anc 583 . 2 (𝜑 → (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
506ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝐹:𝐵𝑌)
51 simpr 484 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
52 id 22 . . . . . . . . . . . . . . 15 (𝐵 = ℕ → 𝐵 = ℕ)
5352eqcomd 2744 . . . . . . . . . . . . . 14 (𝐵 = ℕ → ℕ = 𝐵)
5453adantr 480 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → ℕ = 𝐵)
5551, 54eleqtrd 2841 . . . . . . . . . . . 12 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → 𝑛𝐵)
5655adantll 710 . . . . . . . . . . 11 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛𝐵)
5750, 56ffvelrnd 6944 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑌)
58 eqid 2738 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ (𝐹𝑛)) = (𝑛 ∈ ℕ ↦ (𝐹𝑛))
5957, 58fmptd 6970 . . . . . . . . 9 ((𝜑𝐵 = ℕ) → (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌)
6023a1i 11 . . . . . . . . . . . 12 (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)))
6155iftrued 4464 . . . . . . . . . . . . 13 ((𝐵 = ℕ ∧ 𝑛 ∈ ℕ) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
6261mpteq2dva 5170 . . . . . . . . . . . 12 (𝐵 = ℕ → (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
6360, 62eqtrd 2778 . . . . . . . . . . 11 (𝐵 = ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ (𝐹𝑛)))
6463feq1d 6569 . . . . . . . . . 10 (𝐵 = ℕ → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌))
6564adantl 481 . . . . . . . . 9 ((𝜑𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ↔ (𝑛 ∈ ℕ ↦ (𝐹𝑛)):ℕ⟶𝑌))
6659, 65mpbird 256 . . . . . . . 8 ((𝜑𝐵 = ℕ) → 𝐴:ℕ⟶𝑌)
67 f1ofo 6707 . . . . . . . . . . . . . . . 16 (𝐹:𝐵1-1-onto𝑌𝐹:𝐵onto𝑌)
684, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐵onto𝑌)
69 dffo3 6960 . . . . . . . . . . . . . . 15 (𝐹:𝐵onto𝑌 ↔ (𝐹:𝐵𝑌 ∧ ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛)))
7068, 69sylib 217 . . . . . . . . . . . . . 14 (𝜑 → (𝐹:𝐵𝑌 ∧ ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛)))
7170simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛))
7271adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → ∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛))
73 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → 𝑦𝑌)
74 rspa 3130 . . . . . . . . . . . 12 ((∀𝑦𝑌𝑛𝐵 𝑦 = (𝐹𝑛) ∧ 𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
7572, 73, 74syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
7675adantlr 711 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → ∃𝑛𝐵 𝑦 = (𝐹𝑛))
77 nfv 1918 . . . . . . . . . . . 12 𝑛(𝜑𝐵 = ℕ)
78 nfre1 3234 . . . . . . . . . . . 12 𝑛𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)
79 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝑛𝐵)
80 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝐵 = ℕ)
8179, 80eleqtrd 2841 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵) → 𝑛 ∈ ℕ)
8281adantll 710 . . . . . . . . . . . . . . 15 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵) → 𝑛 ∈ ℕ)
83823adant3 1130 . . . . . . . . . . . . . 14 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑛 ∈ ℕ)
8460fveq1d 6758 . . . . . . . . . . . . . . . . 17 (𝐵 = ℕ → (𝐴𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛))
85843ad2ant1 1131 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → (𝐴𝑛) = ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛))
86 fvex 6769 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑛) ∈ V
8786, 15ifex 4506 . . . . . . . . . . . . . . . . . . . 20 if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐵 = ℕ ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
89 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))
9089fvmpt2 6868 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
9181, 88, 90syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝐵 = ℕ ∧ 𝑛𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
922adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐵 = ℕ ∧ 𝑛𝐵) → if(𝑛𝐵, (𝐹𝑛), ∅) = (𝐹𝑛))
9391, 92eqtrd 2778 . . . . . . . . . . . . . . . . 17 ((𝐵 = ℕ ∧ 𝑛𝐵) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = (𝐹𝑛))
94933adant3 1130 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝐵, (𝐹𝑛), ∅))‘𝑛) = (𝐹𝑛))
95 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐹𝑛) → 𝑦 = (𝐹𝑛))
9695eqcomd 2744 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐹𝑛) → (𝐹𝑛) = 𝑦)
97963ad2ant3 1133 . . . . . . . . . . . . . . . 16 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → (𝐹𝑛) = 𝑦)
9885, 94, 973eqtrrd 2783 . . . . . . . . . . . . . . 15 ((𝐵 = ℕ ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑦 = (𝐴𝑛))
99983adant1l 1174 . . . . . . . . . . . . . 14 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → 𝑦 = (𝐴𝑛))
100 rspe 3232 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑦 = (𝐴𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
10183, 99, 100syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝐵 = ℕ) ∧ 𝑛𝐵𝑦 = (𝐹𝑛)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
1021013exp 1117 . . . . . . . . . . . 12 ((𝜑𝐵 = ℕ) → (𝑛𝐵 → (𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
10377, 78, 102rexlimd 3245 . . . . . . . . . . 11 ((𝜑𝐵 = ℕ) → (∃𝑛𝐵 𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
104103adantr 480 . . . . . . . . . 10 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → (∃𝑛𝐵 𝑦 = (𝐹𝑛) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
10576, 104mpd 15 . . . . . . . . 9 (((𝜑𝐵 = ℕ) ∧ 𝑦𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
106105ralrimiva 3107 . . . . . . . 8 ((𝜑𝐵 = ℕ) → ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
10766, 106jca 511 . . . . . . 7 ((𝜑𝐵 = ℕ) → (𝐴:ℕ⟶𝑌 ∧ ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
108 dffo3 6960 . . . . . . 7 (𝐴:ℕ–onto𝑌 ↔ (𝐴:ℕ⟶𝑌 ∧ ∀𝑦𝑌𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
109107, 108sylibr 233 . . . . . 6 ((𝜑𝐵 = ℕ) → 𝐴:ℕ–onto𝑌)
110 founiiun 42604 . . . . . 6 (𝐴:ℕ–onto𝑌 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
111109, 110syl 17 . . . . 5 ((𝜑𝐵 = ℕ) → 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
112 uniun 4861 . . . . . . . 8 (𝑌 ∪ {∅}) = ( 𝑌 {∅})
11315unisn 4858 . . . . . . . . 9 {∅} = ∅
114113uneq2i 4090 . . . . . . . 8 ( 𝑌 {∅}) = ( 𝑌 ∪ ∅)
115 un0 4321 . . . . . . . 8 ( 𝑌 ∪ ∅) = 𝑌
116112, 114, 1153eqtrri 2771 . . . . . . 7 𝑌 = (𝑌 ∪ {∅})
117116a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝑌 = (𝑌 ∪ {∅}))
11824adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ⟶(𝑌 ∪ {∅}))
119 nfv 1918 . . . . . . . . . . . . 13 𝑛((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅)
120 isomenndlem.b . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℕ)
121120adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊆ ℕ)
12252necon3bi 2969 . . . . . . . . . . . . . . . . . 18 𝐵 = ℕ → 𝐵 ≠ ℕ)
123122adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ≠ ℕ)
124121, 123jca 511 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ))
125 df-pss 3902 . . . . . . . . . . . . . . . 16 (𝐵 ⊊ ℕ ↔ (𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ))
126124, 125sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐵 ⊊ ℕ)
127 pssnel 4401 . . . . . . . . . . . . . . 15 (𝐵 ⊊ ℕ → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
128126, 127syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
129128adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛(𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵))
130 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑛 ∈ ℕ)
131 simprl 767 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑛 ∈ ℕ)
13287a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
13323fvmpt2 6868 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
134131, 132, 133syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
135134adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
13613ad2antll 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
137 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ∅ → 𝑦 = ∅)
138137eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝑦 = ∅ → ∅ = 𝑦)
139138ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → ∅ = 𝑦)
140135, 136, 1393eqtrrd 2783 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → 𝑦 = (𝐴𝑛))
141130, 140, 100syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑦 = ∅) ∧ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵)) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
142141ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
143142adantlr 711 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐵) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
144119, 78, 129, 143exlimimdd 2215 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
145144adantlr 711 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
146 simplll 771 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝜑)
147 simpl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦 ∈ (𝑌 ∪ {∅}))
148 elsni 4575 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {∅} → 𝑦 = ∅)
149148con3i 154 . . . . . . . . . . . . . . 15 𝑦 = ∅ → ¬ 𝑦 ∈ {∅})
150149adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → ¬ 𝑦 ∈ {∅})
151 elunnel2 42471 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 ∈ {∅}) → 𝑦𝑌)
152147, 150, 151syl2anc 583 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑌 ∪ {∅}) ∧ ¬ 𝑦 = ∅) → 𝑦𝑌)
153152adantll 710 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → 𝑦𝑌)
15468adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑌) → 𝐹:𝐵onto𝑌)
155 foelrni 6813 . . . . . . . . . . . . . 14 ((𝐹:𝐵onto𝑌𝑦𝑌) → ∃𝑛𝐵 (𝐹𝑛) = 𝑦)
156154, 73, 155syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑦𝑌) → ∃𝑛𝐵 (𝐹𝑛) = 𝑦)
157 nfv 1918 . . . . . . . . . . . . . 14 𝑛(𝜑𝑦𝑌)
158120sselda 3917 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵) → 𝑛 ∈ ℕ)
1591583adant3 1130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → 𝑛 ∈ ℕ)
160158, 87, 133sylancl 585 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛𝐵) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
161160, 3eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛𝐵) → (𝐴𝑛) = (𝐹𝑛))
1621613adant3 1130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → (𝐴𝑛) = (𝐹𝑛))
163 simp3 1136 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → (𝐹𝑛) = 𝑦)
164162, 163eqtr2d 2779 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → 𝑦 = (𝐴𝑛))
165159, 164, 100syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝐵 ∧ (𝐹𝑛) = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
1661653exp 1117 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛𝐵 → ((𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
167166adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦𝑌) → (𝑛𝐵 → ((𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))))
168157, 78, 167rexlimd 3245 . . . . . . . . . . . . 13 ((𝜑𝑦𝑌) → (∃𝑛𝐵 (𝐹𝑛) = 𝑦 → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
169156, 168mpd 15 . . . . . . . . . . . 12 ((𝜑𝑦𝑌) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
170146, 153, 169syl2anc 583 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) ∧ ¬ 𝑦 = ∅) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
171145, 170pm2.61dan 809 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐵 = ℕ) ∧ 𝑦 ∈ (𝑌 ∪ {∅})) → ∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
172171ralrimiva 3107 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐵 = ℕ) → ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛))
173118, 172jca 511 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
174 dffo3 6960 . . . . . . . 8 (𝐴:ℕ–onto→(𝑌 ∪ {∅}) ↔ (𝐴:ℕ⟶(𝑌 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑌 ∪ {∅})∃𝑛 ∈ ℕ 𝑦 = (𝐴𝑛)))
175173, 174sylibr 233 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝐴:ℕ–onto→(𝑌 ∪ {∅}))
176 founiiun 42604 . . . . . . 7 (𝐴:ℕ–onto→(𝑌 ∪ {∅}) → (𝑌 ∪ {∅}) = 𝑛 ∈ ℕ (𝐴𝑛))
177175, 176syl 17 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 = ℕ) → (𝑌 ∪ {∅}) = 𝑛 ∈ ℕ (𝐴𝑛))
178117, 177eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ 𝐵 = ℕ) → 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
179111, 178pm2.61dan 809 . . . 4 (𝜑 𝑌 = 𝑛 ∈ ℕ (𝐴𝑛))
180179fveq2d 6760 . . 3 (𝜑 → (𝑂 𝑌) = (𝑂 𝑛 ∈ ℕ (𝐴𝑛)))
181 uncom 4083 . . . . . . . . 9 ((ℕ ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵))
182181a1i 11 . . . . . . . 8 (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (ℕ ∖ 𝐵)))
183 undif 4412 . . . . . . . . 9 (𝐵 ⊆ ℕ ↔ (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ)
184120, 183sylib 217 . . . . . . . 8 (𝜑 → (𝐵 ∪ (ℕ ∖ 𝐵)) = ℕ)
185182, 184eqtrd 2778 . . . . . . 7 (𝜑 → ((ℕ ∖ 𝐵) ∪ 𝐵) = ℕ)
186185eqcomd 2744 . . . . . 6 (𝜑 → ℕ = ((ℕ ∖ 𝐵) ∪ 𝐵))
187186mpteq1d 5165 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))) = (𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛))))
188187fveq2d 6760 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛)))))
189 nfv 1918 . . . . 5 𝑛𝜑
190 difexg 5246 . . . . . . 7 (ℕ ∈ V → (ℕ ∖ 𝐵) ∈ V)
19132, 190ax-mp 5 . . . . . 6 (ℕ ∖ 𝐵) ∈ V
192191a1i 11 . . . . 5 (𝜑 → (ℕ ∖ 𝐵) ∈ V)
19332a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
194193, 120ssexd 5243 . . . . 5 (𝜑𝐵 ∈ V)
195 disjdifr 4403 . . . . . 6 ((ℕ ∖ 𝐵) ∩ 𝐵) = ∅
196195a1i 11 . . . . 5 (𝜑 → ((ℕ ∖ 𝐵) ∩ 𝐵) = ∅)
197 simpl 482 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → 𝜑)
198 eldifi 4057 . . . . . . 7 (𝑛 ∈ (ℕ ∖ 𝐵) → 𝑛 ∈ ℕ)
199198adantl 481 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → 𝑛 ∈ ℕ)
200 isomenndlem.o . . . . . . . 8 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
201200adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
20231ffvelrnda 6943 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ 𝒫 𝑋)
203201, 202ffvelrnd 6944 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
204197, 199, 203syl2anc 583 . . . . 5 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
205158, 203syldan 590 . . . . 5 ((𝜑𝑛𝐵) → (𝑂‘(𝐴𝑛)) ∈ (0[,]+∞))
206189, 192, 194, 196, 204, 205sge0splitmpt 43839 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ((ℕ ∖ 𝐵) ∪ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))))
207 eqid 2738 . . . . . . . 8 (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))) = (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))
208205, 207fmptd 6970 . . . . . . 7 (𝜑 → (𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))):𝐵⟶(0[,]+∞))
209194, 208sge0xrcl 43813 . . . . . 6 (𝜑 → (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))) ∈ ℝ*)
210209xaddid2d 42748 . . . . 5 (𝜑 → (0 +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
21187a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) ∈ V)
212199, 211, 133syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴𝑛) = if(𝑛𝐵, (𝐹𝑛), ∅))
213 eldifn 4058 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ 𝐵) → ¬ 𝑛𝐵)
214213adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → ¬ 𝑛𝐵)
215214iffalsed 4467 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → if(𝑛𝐵, (𝐹𝑛), ∅) = ∅)
216212, 215eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝐴𝑛) = ∅)
217216fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) = (𝑂‘∅))
218 isomenndlem.o0 . . . . . . . . . . 11 (𝜑 → (𝑂‘∅) = 0)
219197, 218syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘∅) = 0)
220217, 219eqtrd 2778 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐵)) → (𝑂‘(𝐴𝑛)) = 0)
221220mpteq2dva 5170 . . . . . . . 8 (𝜑 → (𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛))) = (𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0))
222221fveq2d 6760 . . . . . . 7 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)))
223189, 192sge0z 43803 . . . . . . 7 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ 0)) = 0)
224222, 223eqtrd 2778 . . . . . 6 (𝜑 → (Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) = 0)
225224oveq1d 7270 . . . . 5 (𝜑 → ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (0 +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))))
226200, 25feqresmpt 6820 . . . . . . 7 (𝜑 → (𝑂𝑌) = (𝑦𝑌 ↦ (𝑂𝑦)))
227226fveq2d 6760 . . . . . 6 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑦𝑌 ↦ (𝑂𝑦))))
228 nfv 1918 . . . . . . 7 𝑦𝜑
229 fveq2 6756 . . . . . . 7 (𝑦 = (𝐴𝑛) → (𝑂𝑦) = (𝑂‘(𝐴𝑛)))
230161eqcomd 2744 . . . . . . 7 ((𝜑𝑛𝐵) → (𝐹𝑛) = (𝐴𝑛))
231200adantr 480 . . . . . . . 8 ((𝜑𝑦𝑌) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
23225sselda 3917 . . . . . . . 8 ((𝜑𝑦𝑌) → 𝑦 ∈ 𝒫 𝑋)
233231, 232ffvelrnd 6944 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑂𝑦) ∈ (0[,]+∞))
234228, 189, 229, 194, 4, 230, 233sge0f1o 43810 . . . . . 6 (𝜑 → (Σ^‘(𝑦𝑌 ↦ (𝑂𝑦))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
235 eqidd 2739 . . . . . 6 (𝜑 → (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
236227, 234, 2353eqtrd 2782 . . . . 5 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛)))))
237210, 225, 2363eqtr4d 2788 . . . 4 (𝜑 → ((Σ^‘(𝑛 ∈ (ℕ ∖ 𝐵) ↦ (𝑂‘(𝐴𝑛)))) +𝑒^‘(𝑛𝐵 ↦ (𝑂‘(𝐴𝑛))))) = (Σ^‘(𝑂𝑌)))
238188, 206, 2373eqtrrd 2783 . . 3 (𝜑 → (Σ^‘(𝑂𝑌)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛)))))
239180, 238breq12d 5083 . 2 (𝜑 → ((𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)) ↔ (𝑂 𝑛 ∈ ℕ (𝐴𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝐴𝑛))))))
24049, 239mpbird 256 1 (𝜑 → (𝑂 𝑌) ≤ (Σ^‘(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  wpss 3884  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153  cres 5582  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  cle 10941  cn 11903   +𝑒 cxad 12775  [,]cicc 13011  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  isomennd  43959
  Copyright terms: Public domain W3C validator