![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12cOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tz6.12c 6914 as of 23-Dec-2024. (Contributed by NM, 30-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tz6.12cOLD | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2576 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
2 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
3 | euex 2565 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
4 | tz6.12-1 6915 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
5 | 4 | expcom 412 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
6 | breq2 5147 | . . . . . 6 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
7 | 6 | biimprd 247 | . . . . 5 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
8 | 5, 7 | syli 39 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
9 | 1, 2, 3, 8 | exlimimdd 2207 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
10 | 9, 6 | syl5ibcom 244 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
11 | 10, 5 | impbid 211 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃!weu 2556 class class class wbr 5143 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-iota 6495 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |