MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12cOLD Structured version   Visualization version   GIF version

Theorem tz6.12cOLD 6947
Description: Obsolete version of tz6.12c 6942 as of 23-Dec-2024. (Contributed by NM, 30-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tz6.12cOLD (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12cOLD
StepHypRef Expression
1 nfeu1 2591 . . . 4 𝑦∃!𝑦 𝐴𝐹𝑦
2 nfv 1913 . . . 4 𝑦 𝐴𝐹(𝐹𝐴)
3 euex 2580 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦)
4 tz6.12-1 6943 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
54expcom 413 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹𝐴) = 𝑦))
6 breq2 5170 . . . . . 6 ((𝐹𝐴) = 𝑦 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝑦))
76biimprd 248 . . . . 5 ((𝐹𝐴) = 𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
85, 7syli 39 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
91, 2, 3, 8exlimimdd 2220 . . 3 (∃!𝑦 𝐴𝐹𝑦𝐴𝐹(𝐹𝐴))
109, 6syl5ibcom 245 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
1110, 5impbid 212 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  ∃!weu 2571   class class class wbr 5166  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator