![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12cOLD | Structured version Visualization version GIF version |
Description: Obsolete version of tz6.12c 6929 as of 23-Dec-2024. (Contributed by NM, 30-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tz6.12cOLD | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2586 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | |
2 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹(𝐹‘𝐴) | |
3 | euex 2575 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦) | |
4 | tz6.12-1 6930 | . . . . . 6 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
5 | 4 | expcom 413 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹‘𝐴) = 𝑦)) |
6 | breq2 5152 | . . . . . 6 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝑦)) | |
7 | 6 | biimprd 248 | . . . . 5 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
8 | 5, 7 | syli 39 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴))) |
9 | 1, 2, 3, 8 | exlimimdd 2217 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → 𝐴𝐹(𝐹‘𝐴)) |
10 | 9, 6 | syl5ibcom 245 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 → 𝐴𝐹𝑦)) |
11 | 10, 5 | impbid 212 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃!weu 2566 class class class wbr 5148 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |