|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrn | Structured version Visualization version GIF version | ||
| Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| rnxrn | ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anass 1094 | . . . . 5 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 2 | 1 | 3exbii 1849 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | 
| 3 | exrot3 2164 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 4 | 19.42v 1952 | . . . . 5 ⊢ (∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 5 | 4 | 2exbii 1848 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | 
| 6 | 2, 3, 5 | 3bitri 297 | . . 3 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | 
| 7 | 6 | abbii 2808 | . 2 ⊢ {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} | 
| 8 | dfrn6 38304 | . . 3 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} | |
| 9 | n0 4352 | . . . . 5 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆)) | |
| 10 | elec1cnvxrn2 38399 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 11 | 10 | elv 3484 | . . . . . 6 ⊢ (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) | 
| 12 | 11 | exbii 1847 | . . . . 5 ⊢ (∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) | 
| 13 | 9, 12 | bitri 275 | . . . 4 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) | 
| 14 | 13 | abbii 2808 | . . 3 ⊢ {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| 15 | 8, 14 | eqtri 2764 | . 2 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| 16 | df-opab 5205 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} | |
| 17 | 7, 15, 16 | 3eqtr4i 2774 | 1 ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 ≠ wne 2939 Vcvv 3479 ∅c0 4332 〈cop 4631 class class class wbr 5142 {copab 5204 ◡ccnv 5683 ran crn 5685 [cec 8744 ⋉ cxrn 38182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-1st 8015 df-2nd 8016 df-ec 8748 df-xrn 38373 | 
| This theorem is referenced by: rnxrnres 38401 dfcoss4 38417 dfssr2 38501 | 
| Copyright terms: Public domain | W3C validator |