Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrn Structured version   Visualization version   GIF version

Theorem rnxrn 36524
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
Assertion
Ref Expression
rnxrn ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . 5 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
213exbii 1852 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
3 exrot3 2165 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
4 19.42v 1957 . . . . 5 (∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
542exbii 1851 . . . 4 (∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
62, 3, 53bitri 297 . . 3 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
76abbii 2808 . 2 {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
8 dfrn6 36438 . . 3 ran (𝑅𝑆) = {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅}
9 n0 4280 . . . . 5 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆))
10 elec1cnvxrn2 36523 . . . . . . 7 (𝑢 ∈ V → (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
1110elv 3438 . . . . . 6 (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1211exbii 1850 . . . . 5 (∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
139, 12bitri 274 . . . 4 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1413abbii 2808 . . 3 {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
158, 14eqtri 2766 . 2 ran (𝑅𝑆) = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
16 df-opab 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
177, 15, 163eqtr4i 2776 1 ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  Vcvv 3432  c0 4256  cop 4567   class class class wbr 5074  {copab 5136  ccnv 5588  ran crn 5590  [cec 8496  cxrn 36332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-1st 7831  df-2nd 7832  df-ec 8500  df-xrn 36501
This theorem is referenced by:  rnxrnres  36525  dfcoss4  36541  dfssr2  36617
  Copyright terms: Public domain W3C validator