| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrn | Structured version Visualization version GIF version | ||
| Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
| Ref | Expression |
|---|---|
| rnxrn | ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . . . . 5 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 2 | 1 | 3exbii 1850 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 3 | exrot3 2166 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 4 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 5 | 4 | 2exbii 1849 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 6 | 2, 3, 5 | 3bitri 297 | . . 3 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
| 7 | 6 | abbii 2797 | . 2 ⊢ {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} |
| 8 | dfrn6 38297 | . . 3 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} | |
| 9 | n0 4319 | . . . . 5 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆)) | |
| 10 | elec1cnvxrn2 38390 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
| 11 | 10 | elv 3455 | . . . . . 6 ⊢ (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 12 | 11 | exbii 1848 | . . . . 5 ⊢ (∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 13 | 9, 12 | bitri 275 | . . . 4 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
| 14 | 13 | abbii 2797 | . . 3 ⊢ {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 15 | 8, 14 | eqtri 2753 | . 2 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| 16 | df-opab 5173 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} | |
| 17 | 7, 15, 16 | 3eqtr4i 2763 | 1 ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 class class class wbr 5110 {copab 5172 ◡ccnv 5640 ran crn 5642 [cec 8672 ⋉ cxrn 38175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-ec 8676 df-xrn 38360 |
| This theorem is referenced by: rnxrnres 38392 dfcoss4 38413 dfssr2 38497 |
| Copyright terms: Public domain | W3C validator |