Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrn Structured version   Visualization version   GIF version

Theorem rnxrn 38400
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
Assertion
Ref Expression
rnxrn ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . 5 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
213exbii 1849 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
3 exrot3 2164 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
4 19.42v 1952 . . . . 5 (∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
542exbii 1848 . . . 4 (∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
62, 3, 53bitri 297 . . 3 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
76abbii 2808 . 2 {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
8 dfrn6 38304 . . 3 ran (𝑅𝑆) = {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅}
9 n0 4352 . . . . 5 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆))
10 elec1cnvxrn2 38399 . . . . . . 7 (𝑢 ∈ V → (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
1110elv 3484 . . . . . 6 (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1211exbii 1847 . . . . 5 (∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
139, 12bitri 275 . . . 4 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1413abbii 2808 . . 3 {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
158, 14eqtri 2764 . 2 ran (𝑅𝑆) = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
16 df-opab 5205 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
177, 15, 163eqtr4i 2774 1 ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wne 2939  Vcvv 3479  c0 4332  cop 4631   class class class wbr 5142  {copab 5204  ccnv 5683  ran crn 5685  [cec 8744  cxrn 38182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568  df-1st 8015  df-2nd 8016  df-ec 8748  df-xrn 38373
This theorem is referenced by:  rnxrnres  38401  dfcoss4  38417  dfssr2  38501
  Copyright terms: Public domain W3C validator