Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrn | Structured version Visualization version GIF version |
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
Ref | Expression |
---|---|
rnxrn | ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1093 | . . . . 5 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
2 | 1 | 3exbii 1853 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
3 | exrot3 2167 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
4 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
5 | 4 | 2exbii 1852 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑢(𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
6 | 2, 3, 5 | 3bitri 296 | . . 3 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} |
8 | dfrn6 36365 | . . 3 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} | |
9 | n0 4277 | . . . . 5 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆)) | |
10 | elec1cnvxrn2 36450 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 10 | elv 3428 | . . . . . 6 ⊢ (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | exbii 1851 | . . . . 5 ⊢ (∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 9, 12 | bitri 274 | . . . 4 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
14 | 13 | abbii 2809 | . . 3 ⊢ {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
15 | 8, 14 | eqtri 2766 | . 2 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
16 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} | |
17 | 7, 15, 16 | 3eqtr4i 2776 | 1 ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 class class class wbr 5070 {copab 5132 ◡ccnv 5579 ran crn 5581 [cec 8454 ⋉ cxrn 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-ec 8458 df-xrn 36428 |
This theorem is referenced by: rnxrnres 36452 dfcoss4 36468 dfssr2 36544 |
Copyright terms: Public domain | W3C validator |