Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrn Structured version   Visualization version   GIF version

Theorem rnxrn 38438
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
Assertion
Ref Expression
rnxrn ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . 5 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
213exbii 1851 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
3 exrot3 2168 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
4 19.42v 1954 . . . . 5 (∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
542exbii 1850 . . . 4 (∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
62, 3, 53bitri 297 . . 3 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
76abbii 2798 . 2 {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
8 dfrn6 38344 . . 3 ran (𝑅𝑆) = {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅}
9 n0 4300 . . . . 5 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆))
10 elec1cnvxrn2 38437 . . . . . . 7 (𝑢 ∈ V → (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
1110elv 3441 . . . . . 6 (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1211exbii 1849 . . . . 5 (∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
139, 12bitri 275 . . . 4 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1413abbii 2798 . . 3 {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
158, 14eqtri 2754 . 2 ran (𝑅𝑆) = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
16 df-opab 5152 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
177, 15, 163eqtr4i 2764 1 ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  c0 4280  cop 4579   class class class wbr 5089  {copab 5151  ccnv 5613  ran crn 5615  [cec 8620  cxrn 38222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38407
This theorem is referenced by:  rnxrnres  38439  dfcoss4  38460  dfssr2  38544
  Copyright terms: Public domain W3C validator