Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrn Structured version   Visualization version   GIF version

Theorem rnxrn 37732
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.)
Assertion
Ref Expression
rnxrn ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Distinct variable groups:   𝑢,𝑅,𝑥,𝑦   𝑢,𝑆,𝑥,𝑦

Proof of Theorem rnxrn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 3anass 1094 . . . . 5 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
213exbii 1851 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
3 exrot3 2164 . . . 4 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)))
4 19.42v 1956 . . . . 5 (∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
542exbii 1850 . . . 4 (∃𝑥𝑦𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥𝑢𝑆𝑦)) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
62, 3, 53bitri 297 . . 3 (∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)))
76abbii 2801 . 2 {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
8 dfrn6 37635 . . 3 ran (𝑅𝑆) = {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅}
9 n0 4346 . . . . 5 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆))
10 elec1cnvxrn2 37731 . . . . . . 7 (𝑢 ∈ V → (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)))
1110elv 3479 . . . . . 6 (𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1211exbii 1849 . . . . 5 (∃𝑢 𝑢 ∈ [𝑤](𝑅𝑆) ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
139, 12bitri 275 . . . 4 ([𝑤](𝑅𝑆) ≠ ∅ ↔ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦))
1413abbii 2801 . . 3 {𝑤 ∣ [𝑤](𝑅𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
158, 14eqtri 2759 . 2 ran (𝑅𝑆) = {𝑤 ∣ ∃𝑢𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥𝑢𝑆𝑦)}
16 df-opab 5211 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦))}
177, 15, 163eqtr4i 2769 1 ran (𝑅𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑆𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wne 2939  Vcvv 3473  c0 4322  cop 4634   class class class wbr 5148  {copab 5210  ccnv 5675  ran crn 5677  [cec 8707  cxrn 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-ec 8711  df-xrn 37705
This theorem is referenced by:  rnxrnres  37733  dfcoss4  37749  dfssr2  37833
  Copyright terms: Public domain W3C validator