![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnxrn | Structured version Visualization version GIF version |
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
Ref | Expression |
---|---|
rnxrn | ⊢ ran (𝑅 ⋉ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1094 | . . . . 5 ⊢ ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
2 | 1 | 3exbii 1851 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
3 | exrot3 2164 | . . . 4 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
4 | 19.42v 1956 | . . . . 5 ⊢ (∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
5 | 4 | 2exbii 1850 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑢(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
6 | 2, 3, 5 | 3bitri 297 | . . 3 ⊢ (∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) |
7 | 6 | abbii 2801 | . 2 ⊢ {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} |
8 | dfrn6 37635 | . . 3 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} | |
9 | n0 4346 | . . . . 5 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆)) | |
10 | elec1cnvxrn2 37731 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))) | |
11 | 10 | elv 3479 | . . . . . 6 ⊢ (𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
12 | 11 | exbii 1849 | . . . . 5 ⊢ (∃𝑢 𝑢 ∈ [𝑤]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
13 | 9, 12 | bitri 275 | . . . 4 ⊢ ([𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅ ↔ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)) |
14 | 13 | abbii 2801 | . . 3 ⊢ {𝑤 ∣ [𝑤]◡(𝑅 ⋉ 𝑆) ≠ ∅} = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
15 | 8, 14 | eqtri 2759 | . 2 ⊢ ran (𝑅 ⋉ 𝑆) = {𝑤 ∣ ∃𝑢∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
16 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦))} | |
17 | 7, 15, 16 | 3eqtr4i 2769 | 1 ⊢ ran (𝑅 ⋉ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ≠ wne 2939 Vcvv 3473 ∅c0 4322 ⟨cop 4634 class class class wbr 5148 {copab 5210 ◡ccnv 5675 ran crn 5677 [cec 8707 ⋉ cxrn 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7979 df-2nd 7980 df-ec 8711 df-xrn 37705 |
This theorem is referenced by: rnxrnres 37733 dfcoss4 37749 dfssr2 37833 |
Copyright terms: Public domain | W3C validator |