![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnoprab | Structured version Visualization version GIF version |
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
Ref | Expression |
---|---|
rnoprab | ⊢ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7467 | . . 3 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | 1 | rneqi 5937 | . 2 ⊢ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
3 | rnopab 5954 | . 2 ⊢ ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
4 | exrot3 2166 | . . . 4 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | opex 5465 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
6 | 5 | isseti 3490 | . . . . . 6 ⊢ ∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ |
7 | 19.41v 1954 | . . . . . 6 ⊢ (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 708 | . . . . 5 ⊢ (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1852 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 275 | . . 3 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 10 | abbii 2803 | . 2 ⊢ {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
12 | 2, 3, 11 | 3eqtri 2765 | 1 ⊢ ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 {cab 2710 ⟨cop 4635 {copab 5211 ran crn 5678 {coprab 7410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 df-oprab 7413 |
This theorem is referenced by: rnoprab2 7513 elrnmpores 7546 ellines 35124 |
Copyright terms: Public domain | W3C validator |