![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnoprab | Structured version Visualization version GIF version |
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.) |
Ref | Expression |
---|---|
rnoprab | ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 6933 | . . 3 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | 1 | rneqi 5553 | . 2 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
3 | rnopab 5572 | . 2 ⊢ ran {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
4 | exrot3 2208 | . . . 4 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
5 | opex 5121 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
6 | 5 | isseti 3395 | . . . . . 6 ⊢ ∃𝑤 𝑤 = 〈𝑥, 𝑦〉 |
7 | 19.41v 2045 | . . . . . 6 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑤 𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 701 | . . . . 5 ⊢ (∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1945 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑤(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 267 | . . 3 ⊢ (∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 10 | abbii 2914 | . 2 ⊢ {𝑧 ∣ ∃𝑤∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
12 | 2, 3, 11 | 3eqtri 2823 | 1 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 ∃wex 1875 {cab 2783 〈cop 4372 {copab 4903 ran crn 5311 {coprab 6877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-cnv 5318 df-dm 5320 df-rn 5321 df-oprab 6880 |
This theorem is referenced by: rnoprab2 6976 elrnmpt2res 7006 ellines 32763 |
Copyright terms: Public domain | W3C validator |