Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elima4 Structured version   Visualization version   GIF version

Theorem elima4 33750
Description: Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.)
Assertion
Ref Expression
elima4 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)

Proof of Theorem elima4
Dummy variables 𝑥 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴 ∈ (𝑅𝐵) → 𝐴 ∈ V)
2 xpeq2 5610 . . . . . . 7 ({𝐴} = ∅ → (𝐵 × {𝐴}) = (𝐵 × ∅))
3 xp0 6061 . . . . . . 7 (𝐵 × ∅) = ∅
42, 3eqtrdi 2794 . . . . . 6 ({𝐴} = ∅ → (𝐵 × {𝐴}) = ∅)
54ineq2d 4146 . . . . 5 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = (𝑅 ∩ ∅))
6 in0 4325 . . . . 5 (𝑅 ∩ ∅) = ∅
75, 6eqtrdi 2794 . . . 4 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = ∅)
87necon3i 2976 . . 3 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → {𝐴} ≠ ∅)
9 snnzb 4654 . . 3 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
108, 9sylibr 233 . 2 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → 𝐴 ∈ V)
11 eleq1 2826 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (𝑅𝐵) ↔ 𝐴 ∈ (𝑅𝐵)))
12 sneq 4571 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1312xpeq2d 5619 . . . . 5 (𝑥 = 𝐴 → (𝐵 × {𝑥}) = (𝐵 × {𝐴}))
1413ineq2d 4146 . . . 4 (𝑥 = 𝐴 → (𝑅 ∩ (𝐵 × {𝑥})) = (𝑅 ∩ (𝐵 × {𝐴})))
1514neeq1d 3003 . . 3 (𝑥 = 𝐴 → ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
16 elin 3903 . . . . . . 7 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})))
17 ancom 461 . . . . . . 7 ((𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})) ↔ (𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅))
18 elxp 5612 . . . . . . . 8 (𝑝 ∈ (𝐵 × {𝑥}) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})))
1918anbi1i 624 . . . . . . 7 ((𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2016, 17, 193bitri 297 . . . . . 6 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2120exbii 1850 . . . . 5 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
22 anass 469 . . . . . . . . 9 (((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
23222exbii 1851 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
24 19.41vv 1954 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2523, 24bitr3i 276 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2625exbii 1850 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
27 exrot3 2165 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
2826, 27bitr3i 276 . . . . 5 (∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
29 opex 5379 . . . . . . . . 9 𝑦, 𝑧⟩ ∈ V
30 eleq1 2826 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝𝑅 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3130anbi2d 629 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3229, 31ceqsexv 3479 . . . . . . . 8 (∃𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3332exbii 1850 . . . . . . 7 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
34 anass 469 . . . . . . . . 9 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
35 an12 642 . . . . . . . . 9 ((𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
36 velsn 4577 . . . . . . . . . 10 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
3736anbi1i 624 . . . . . . . . 9 ((𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3834, 35, 373bitri 297 . . . . . . . 8 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3938exbii 1850 . . . . . . 7 (∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
40 vex 3436 . . . . . . . 8 𝑥 ∈ V
41 opeq2 4805 . . . . . . . . . 10 (𝑧 = 𝑥 → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑥⟩)
4241eleq1d 2823 . . . . . . . . 9 (𝑧 = 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4342anbi2d 629 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
4440, 43ceqsexv 3479 . . . . . . 7 (∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4533, 39, 443bitri 297 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4645exbii 1850 . . . . 5 (∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4721, 28, 463bitri 297 . . . 4 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
48 n0 4280 . . . 4 ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})))
4940elima3 5976 . . . 4 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5047, 48, 493bitr4ri 304 . . 3 (𝑥 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅)
5111, 15, 50vtoclbg 3507 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
521, 10, 51pm5.21nii 380 1 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  cin 3886  c0 4256  {csn 4561  cop 4567   × cxp 5587  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator