Step | Hyp | Ref
| Expression |
1 | | df-img 34095 |
. . 3
⊢ Img =
(Image((2nd ∘ 1st ) ↾ (1st ↾
(V × V))) ∘ Cart) |
2 | 1 | breqi 5076 |
. 2
⊢
(〈𝐴, 𝐵〉Img𝐶 ↔ 〈𝐴, 𝐵〉(Image((2nd ∘
1st ) ↾ (1st ↾ (V × V))) ∘
Cart)𝐶) |
3 | | opex 5373 |
. . . 4
⊢
〈𝐴, 𝐵〉 ∈ V |
4 | | brimg.3 |
. . . 4
⊢ 𝐶 ∈ V |
5 | 3, 4 | brco 5768 |
. . 3
⊢
(〈𝐴, 𝐵〉(Image((2nd
∘ 1st ) ↾ (1st ↾ (V × V)))
∘ Cart)𝐶 ↔
∃𝑎(〈𝐴, 𝐵〉Cart𝑎 ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶)) |
6 | | brimg.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
7 | | brimg.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
8 | | vex 3426 |
. . . . . 6
⊢ 𝑎 ∈ V |
9 | 6, 7, 8 | brcart 34161 |
. . . . 5
⊢
(〈𝐴, 𝐵〉Cart𝑎 ↔ 𝑎 = (𝐴 × 𝐵)) |
10 | 9 | anbi1i 623 |
. . . 4
⊢
((〈𝐴, 𝐵〉Cart𝑎 ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶) ↔ (𝑎 = (𝐴 × 𝐵) ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶)) |
11 | 10 | exbii 1851 |
. . 3
⊢
(∃𝑎(〈𝐴, 𝐵〉Cart𝑎 ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶) ↔ ∃𝑎(𝑎 = (𝐴 × 𝐵) ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶)) |
12 | 6, 7 | xpex 7581 |
. . . 4
⊢ (𝐴 × 𝐵) ∈ V |
13 | | breq1 5073 |
. . . 4
⊢ (𝑎 = (𝐴 × 𝐵) → (𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶 ↔ (𝐴 × 𝐵)Image((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝐶)) |
14 | 12, 13 | ceqsexv 3469 |
. . 3
⊢
(∃𝑎(𝑎 = (𝐴 × 𝐵) ∧ 𝑎Image((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝐶) ↔ (𝐴 × 𝐵)Image((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝐶) |
15 | 5, 11, 14 | 3bitri 296 |
. 2
⊢
(〈𝐴, 𝐵〉(Image((2nd
∘ 1st ) ↾ (1st ↾ (V × V)))
∘ Cart)𝐶 ↔
(𝐴 × 𝐵)Image((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝐶) |
16 | 12, 4 | brimage 34155 |
. . 3
⊢ ((𝐴 × 𝐵)Image((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝐶 ↔ 𝐶 = (((2nd ∘ 1st
) ↾ (1st ↾ (V × V))) “ (𝐴 × 𝐵))) |
17 | | 19.42v 1958 |
. . . . . . . 8
⊢
(∃𝑎(𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥)) ↔ (𝑏 ∈ 𝐵 ∧ ∃𝑎(𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
18 | | anass 468 |
. . . . . . . . . . 11
⊢ (((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (𝑝 = 〈𝑎, 𝑏〉 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥))) |
19 | | an21 640 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥))) |
20 | 19 | anbi2i 622 |
. . . . . . . . . . 11
⊢ ((𝑝 = 〈𝑎, 𝑏〉 ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) ↔ (𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)))) |
21 | 18, 20 | bitri 274 |
. . . . . . . . . 10
⊢ (((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)))) |
22 | 21 | 2exbii 1852 |
. . . . . . . . 9
⊢
(∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑝∃𝑎(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)))) |
23 | | excom 2164 |
. . . . . . . . 9
⊢
(∃𝑝∃𝑎(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥))) ↔ ∃𝑎∃𝑝(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)))) |
24 | | opex 5373 |
. . . . . . . . . . 11
⊢
〈𝑎, 𝑏〉 ∈ V |
25 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥 ↔ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥)) |
26 | 25 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
27 | 26 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑎, 𝑏〉 → ((𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) ↔ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥)))) |
28 | 24, 27 | ceqsexv 3469 |
. . . . . . . . . 10
⊢
(∃𝑝(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥))) ↔ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
29 | 28 | exbii 1851 |
. . . . . . . . 9
⊢
(∃𝑎∃𝑝(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥))) ↔ ∃𝑎(𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
30 | 22, 23, 29 | 3bitri 296 |
. . . . . . . 8
⊢
(∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑎(𝑏 ∈ 𝐵 ∧ (𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
31 | | df-br 5071 |
. . . . . . . . . 10
⊢ (𝑏𝐴𝑥 ↔ 〈𝑏, 𝑥〉 ∈ 𝐴) |
32 | | risset 3193 |
. . . . . . . . . . 11
⊢
(〈𝑏, 𝑥〉 ∈ 𝐴 ↔ ∃𝑎 ∈ 𝐴 𝑎 = 〈𝑏, 𝑥〉) |
33 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑏 ∈ V |
34 | 33 | brresi 5889 |
. . . . . . . . . . . . . . 15
⊢ (𝑎(1st ↾ (V
× V))𝑏 ↔ (𝑎 ∈ (V × V) ∧
𝑎1st 𝑏)) |
35 | | df-br 5071 |
. . . . . . . . . . . . . . 15
⊢ (𝑎(1st ↾ (V
× V))𝑏 ↔
〈𝑎, 𝑏〉 ∈ (1st ↾ (V
× V))) |
36 | 34, 35 | bitr3i 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (V × V) ∧
𝑎1st 𝑏) ↔ 〈𝑎, 𝑏〉 ∈ (1st ↾ (V
× V))) |
37 | 36 | anbi1i 623 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ (V × V) ∧
𝑎1st 𝑏) ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥) ↔ (〈𝑎, 𝑏〉 ∈ (1st ↾ (V
× V)) ∧ 〈𝑎,
𝑏〉(2nd
∘ 1st )𝑥)) |
38 | | elvv 5652 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ (V × V) ↔
∃𝑝∃𝑞 𝑎 = 〈𝑝, 𝑞〉) |
39 | 38 | anbi1i 623 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ (V × V) ∧
(𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) ↔ (∃𝑝∃𝑞 𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥))) |
40 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ (V × V) ∧
𝑎1st 𝑏) ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥) ↔ (𝑎 ∈ (V × V) ∧
(𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥))) |
41 | | ancom 460 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑝 = 𝑏 ∧ 𝑞 = 𝑥)) ↔ ((𝑝 = 𝑏 ∧ 𝑞 = 𝑥) ∧ 𝑎 = 〈𝑝, 𝑞〉)) |
42 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 〈𝑝, 𝑞〉 → (𝑎1st 𝑏 ↔ 〈𝑝, 𝑞〉1st 𝑏)) |
43 | | opeq1 4801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 〈𝑝, 𝑞〉 → 〈𝑎, 𝑏〉 = 〈〈𝑝, 𝑞〉, 𝑏〉) |
44 | 43 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 〈𝑝, 𝑞〉 → (〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥 ↔ 〈〈𝑝, 𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥)) |
45 | 42, 44 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 〈𝑝, 𝑞〉 → ((𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥) ↔ (〈𝑝, 𝑞〉1st 𝑏 ∧ 〈〈𝑝, 𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥))) |
46 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑝 ∈ V |
47 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑞 ∈ V |
48 | 46, 47 | br1steq 33651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑝, 𝑞〉1st 𝑏 ↔ 𝑏 = 𝑝) |
49 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = 𝑝 ↔ 𝑝 = 𝑏) |
50 | 48, 49 | bitri 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑝, 𝑞〉1st 𝑏 ↔ 𝑝 = 𝑏) |
51 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
〈〈𝑝, 𝑞〉, 𝑏〉 ∈ V |
52 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑥 ∈ V |
53 | 51, 52 | brco 5768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈〈𝑝,
𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥 ↔ ∃𝑎(〈〈𝑝, 𝑞〉, 𝑏〉1st 𝑎 ∧ 𝑎2nd 𝑥)) |
54 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
〈𝑝, 𝑞〉 ∈ V |
55 | 54, 33 | br1steq 33651 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(〈〈𝑝,
𝑞〉, 𝑏〉1st 𝑎 ↔ 𝑎 = 〈𝑝, 𝑞〉) |
56 | 55 | anbi1i 623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((〈〈𝑝,
𝑞〉, 𝑏〉1st 𝑎 ∧ 𝑎2nd 𝑥) ↔ (𝑎 = 〈𝑝, 𝑞〉 ∧ 𝑎2nd 𝑥)) |
57 | 56 | exbii 1851 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑎(〈〈𝑝, 𝑞〉, 𝑏〉1st 𝑎 ∧ 𝑎2nd 𝑥) ↔ ∃𝑎(𝑎 = 〈𝑝, 𝑞〉 ∧ 𝑎2nd 𝑥)) |
58 | 53, 57 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈〈𝑝,
𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥 ↔ ∃𝑎(𝑎 = 〈𝑝, 𝑞〉 ∧ 𝑎2nd 𝑥)) |
59 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 〈𝑝, 𝑞〉 → (𝑎2nd 𝑥 ↔ 〈𝑝, 𝑞〉2nd 𝑥)) |
60 | 54, 59 | ceqsexv 3469 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∃𝑎(𝑎 = 〈𝑝, 𝑞〉 ∧ 𝑎2nd 𝑥) ↔ 〈𝑝, 𝑞〉2nd 𝑥) |
61 | 46, 47 | br2ndeq 33652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑝, 𝑞〉2nd 𝑥 ↔ 𝑥 = 𝑞) |
62 | 60, 61 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑎(𝑎 = 〈𝑝, 𝑞〉 ∧ 𝑎2nd 𝑥) ↔ 𝑥 = 𝑞) |
63 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑞 ↔ 𝑞 = 𝑥) |
64 | 58, 62, 63 | 3bitri 296 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈〈𝑝,
𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥 ↔ 𝑞 = 𝑥) |
65 | 50, 64 | anbi12i 626 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈𝑝, 𝑞〉1st 𝑏 ∧ 〈〈𝑝, 𝑞〉, 𝑏〉(2nd ∘ 1st
)𝑥) ↔ (𝑝 = 𝑏 ∧ 𝑞 = 𝑥)) |
66 | 45, 65 | bitrdi 286 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 〈𝑝, 𝑞〉 → ((𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥) ↔ (𝑝 = 𝑏 ∧ 𝑞 = 𝑥))) |
67 | 66 | pm5.32i 574 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) ↔ (𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑝 = 𝑏 ∧ 𝑞 = 𝑥))) |
68 | | df-3an 1087 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 = 𝑏 ∧ 𝑞 = 𝑥 ∧ 𝑎 = 〈𝑝, 𝑞〉) ↔ ((𝑝 = 𝑏 ∧ 𝑞 = 𝑥) ∧ 𝑎 = 〈𝑝, 𝑞〉)) |
69 | 41, 67, 68 | 3bitr4i 302 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) ↔ (𝑝 = 𝑏 ∧ 𝑞 = 𝑥 ∧ 𝑎 = 〈𝑝, 𝑞〉)) |
70 | 69 | 2exbii 1852 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑝∃𝑞(𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) ↔ ∃𝑝∃𝑞(𝑝 = 𝑏 ∧ 𝑞 = 𝑥 ∧ 𝑎 = 〈𝑝, 𝑞〉)) |
71 | | 19.41vv 1955 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑝∃𝑞(𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) ↔ (∃𝑝∃𝑞 𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥))) |
72 | | opeq1 4801 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑏 → 〈𝑝, 𝑞〉 = 〈𝑏, 𝑞〉) |
73 | 72 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑏 → (𝑎 = 〈𝑝, 𝑞〉 ↔ 𝑎 = 〈𝑏, 𝑞〉)) |
74 | | opeq2 4802 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 𝑥 → 〈𝑏, 𝑞〉 = 〈𝑏, 𝑥〉) |
75 | 74 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑥 → (𝑎 = 〈𝑏, 𝑞〉 ↔ 𝑎 = 〈𝑏, 𝑥〉)) |
76 | 33, 52, 73, 75 | ceqsex2v 3473 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑝∃𝑞(𝑝 = 𝑏 ∧ 𝑞 = 𝑥 ∧ 𝑎 = 〈𝑝, 𝑞〉) ↔ 𝑎 = 〈𝑏, 𝑥〉) |
77 | 70, 71, 76 | 3bitr3ri 301 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 〈𝑏, 𝑥〉 ↔ (∃𝑝∃𝑞 𝑎 = 〈𝑝, 𝑞〉 ∧ (𝑎1st 𝑏 ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥))) |
78 | 39, 40, 77 | 3bitr4ri 303 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 〈𝑏, 𝑥〉 ↔ ((𝑎 ∈ (V × V) ∧ 𝑎1st 𝑏) ∧ 〈𝑎, 𝑏〉(2nd ∘ 1st
)𝑥)) |
79 | 52 | brresi 5889 |
. . . . . . . . . . . . 13
⊢
(〈𝑎, 𝑏〉((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝑥 ↔ (〈𝑎, 𝑏〉 ∈ (1st ↾ (V
× V)) ∧ 〈𝑎,
𝑏〉(2nd
∘ 1st )𝑥)) |
80 | 37, 78, 79 | 3bitr4i 302 |
. . . . . . . . . . . 12
⊢ (𝑎 = 〈𝑏, 𝑥〉 ↔ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥) |
81 | 80 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑎 ∈
𝐴 𝑎 = 〈𝑏, 𝑥〉 ↔ ∃𝑎 ∈ 𝐴 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥) |
82 | 32, 81 | bitri 274 |
. . . . . . . . . 10
⊢
(〈𝑏, 𝑥〉 ∈ 𝐴 ↔ ∃𝑎 ∈ 𝐴 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥) |
83 | | df-rex 3069 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝐴 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥)) |
84 | 31, 82, 83 | 3bitri 296 |
. . . . . . . . 9
⊢ (𝑏𝐴𝑥 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥)) |
85 | 84 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑏𝐴𝑥) ↔ (𝑏 ∈ 𝐵 ∧ ∃𝑎(𝑎 ∈ 𝐴 ∧ 〈𝑎, 𝑏〉((2nd ∘ 1st
) ↾ (1st ↾ (V × V)))𝑥))) |
86 | 17, 30, 85 | 3bitr4ri 303 |
. . . . . . 7
⊢ ((𝑏 ∈ 𝐵 ∧ 𝑏𝐴𝑥) ↔ ∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
87 | 86 | exbii 1851 |
. . . . . 6
⊢
(∃𝑏(𝑏 ∈ 𝐵 ∧ 𝑏𝐴𝑥) ↔ ∃𝑏∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
88 | 52 | elima2 5964 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 “ 𝐵) ↔ ∃𝑏(𝑏 ∈ 𝐵 ∧ 𝑏𝐴𝑥)) |
89 | 52 | elima2 5964 |
. . . . . . 7
⊢ (𝑥 ∈ (((2nd
∘ 1st ) ↾ (1st ↾ (V × V)))
“ (𝐴 × 𝐵)) ↔ ∃𝑝(𝑝 ∈ (𝐴 × 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
90 | | elxp 5603 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (𝐴 × 𝐵) ↔ ∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵))) |
91 | 90 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
92 | | 19.41vv 1955 |
. . . . . . . . 9
⊢
(∃𝑎∃𝑏((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ (∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
93 | 91, 92 | bitr4i 277 |
. . . . . . . 8
⊢ ((𝑝 ∈ (𝐴 × 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑎∃𝑏((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
94 | 93 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑝(𝑝 ∈ (𝐴 × 𝐵) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑝∃𝑎∃𝑏((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
95 | | exrot3 2167 |
. . . . . . . 8
⊢
(∃𝑝∃𝑎∃𝑏((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑎∃𝑏∃𝑝((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
96 | | exrot3 2167 |
. . . . . . . 8
⊢
(∃𝑎∃𝑏∃𝑝((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑏∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
97 | 95, 96 | bitri 274 |
. . . . . . 7
⊢
(∃𝑝∃𝑎∃𝑏((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥) ↔ ∃𝑏∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
98 | 89, 94, 97 | 3bitri 296 |
. . . . . 6
⊢ (𝑥 ∈ (((2nd
∘ 1st ) ↾ (1st ↾ (V × V)))
“ (𝐴 × 𝐵)) ↔ ∃𝑏∃𝑝∃𝑎((𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑝((2nd ∘ 1st )
↾ (1st ↾ (V × V)))𝑥)) |
99 | 87, 88, 98 | 3bitr4ri 303 |
. . . . 5
⊢ (𝑥 ∈ (((2nd
∘ 1st ) ↾ (1st ↾ (V × V)))
“ (𝐴 × 𝐵)) ↔ 𝑥 ∈ (𝐴 “ 𝐵)) |
100 | 99 | eqriv 2735 |
. . . 4
⊢
(((2nd ∘ 1st ) ↾ (1st
↾ (V × V))) “ (𝐴 × 𝐵)) = (𝐴 “ 𝐵) |
101 | 100 | eqeq2i 2751 |
. . 3
⊢ (𝐶 = (((2nd ∘
1st ) ↾ (1st ↾ (V × V))) “ (𝐴 × 𝐵)) ↔ 𝐶 = (𝐴 “ 𝐵)) |
102 | 16, 101 | bitri 274 |
. 2
⊢ ((𝐴 × 𝐵)Image((2nd ∘
1st ) ↾ (1st ↾ (V × V)))𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) |
103 | 2, 15, 102 | 3bitri 296 |
1
⊢
(〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) |