Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinj Structured version   Visualization version   GIF version

Theorem fundcmpsurinj 47414
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinj ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝   𝑔,𝑉
Allowed substitution hints:   𝑉(,𝑝)

Proof of Theorem fundcmpsurinj
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7942 . . . 4 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∈ V)
21adantl 481 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∈ V)
3 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
43sneqd 4604 . . . . . . . 8 (𝑥 = 𝑦 → {(𝐹𝑥)} = {(𝐹𝑦)})
54imaeq2d 6034 . . . . . . 7 (𝑥 = 𝑦 → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ {(𝐹𝑦)}))
65eqeq2d 2741 . . . . . 6 (𝑥 = 𝑦 → (𝑧 = (𝐹 “ {(𝐹𝑥)}) ↔ 𝑧 = (𝐹 “ {(𝐹𝑦)})))
76cbvrexvw 3217 . . . . 5 (∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)}) ↔ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)}))
87abbii 2797 . . . 4 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}
98fundcmpsurinjpreimafv 47413 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔)))
10 foeq3 6773 . . . . 5 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}))
11 f1eq2 6755 . . . . 5 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (:𝑝1-1𝐵:{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵))
1210, 113anbi12d 1439 . . . 4 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ (𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔))))
13122exbidv 1924 . . 3 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (∃𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ∃𝑔(𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔))))
142, 9, 13spcedv 3567 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑝𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
15 exrot3 2166 . 2 (∃𝑝𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
1614, 15sylib 218 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wrex 3054  Vcvv 3450  {csn 4592  ccnv 5640  cima 5644  ccom 5645  wf 6510  1-1wf1 6511  ontowfo 6512  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator