![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinj | Structured version Visualization version GIF version |
Description: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexexg 7947 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
2 | 1 | adantl 483 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) |
3 | fveq2 6892 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
4 | 3 | sneqd 4641 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
5 | 4 | imaeq2d 6060 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑦)})) |
6 | 5 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}))) |
7 | 6 | cbvrexvw 3236 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})) |
8 | 7 | abbii 2803 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} |
9 | 8 | fundcmpsurinjpreimafv 46076 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
10 | foeq3 6804 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})})) | |
11 | f1eq2 6784 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (ℎ:𝑝–1-1→𝐵 ↔ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵)) | |
12 | 10, 11 | 3anbi12d 1438 | . . . 4 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ (𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
13 | 12 | 2exbidv 1928 | . . 3 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
14 | 2, 9, 13 | spcedv 3589 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
15 | exrot3 2166 | . 2 ⊢ (∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | |
16 | 14, 15 | sylib 217 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 Vcvv 3475 {csn 4629 ◡ccnv 5676 “ cima 5680 ∘ ccom 5681 ⟶wf 6540 –1-1→wf1 6541 –onto→wfo 6542 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |