![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinj | Structured version Visualization version GIF version |
Description: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexexg 7984 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) |
3 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
4 | 3 | sneqd 4643 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
5 | 4 | imaeq2d 6080 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑦)})) |
6 | 5 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}))) |
7 | 6 | cbvrexvw 3236 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})) |
8 | 7 | abbii 2807 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} |
9 | 8 | fundcmpsurinjpreimafv 47333 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
10 | foeq3 6819 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})})) | |
11 | f1eq2 6801 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (ℎ:𝑝–1-1→𝐵 ↔ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵)) | |
12 | 10, 11 | 3anbi12d 1436 | . . . 4 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ (𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
13 | 12 | 2exbidv 1922 | . . 3 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
14 | 2, 9, 13 | spcedv 3598 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
15 | exrot3 2163 | . 2 ⊢ (∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | |
16 | 14, 15 | sylib 218 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∃wrex 3068 Vcvv 3478 {csn 4631 ◡ccnv 5688 “ cima 5692 ∘ ccom 5693 ⟶wf 6559 –1-1→wf1 6560 –onto→wfo 6561 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |