![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinj | Structured version Visualization version GIF version |
Description: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexexg 8001 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) |
3 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
4 | 3 | sneqd 4660 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
5 | 4 | imaeq2d 6089 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑦)})) |
6 | 5 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}))) |
7 | 6 | cbvrexvw 3244 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})) |
8 | 7 | abbii 2812 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} |
9 | 8 | fundcmpsurinjpreimafv 47282 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
10 | foeq3 6832 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})})) | |
11 | f1eq2 6813 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (ℎ:𝑝–1-1→𝐵 ↔ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵)) | |
12 | 10, 11 | 3anbi12d 1437 | . . . 4 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ (𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
13 | 12 | 2exbidv 1923 | . . 3 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
14 | 2, 9, 13 | spcedv 3611 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
15 | exrot3 2166 | . 2 ⊢ (∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | |
16 | 14, 15 | sylib 218 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 {csn 4648 ◡ccnv 5699 “ cima 5703 ∘ ccom 5704 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |