Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinj Structured version   Visualization version   GIF version

Theorem fundcmpsurinj 45591
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.)
Assertion
Ref Expression
fundcmpsurinj ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝐴,𝑔,,𝑝   𝐵,𝑔,,𝑝   𝑔,𝐹,,𝑝   𝑔,𝑉
Allowed substitution hints:   𝑉(,𝑝)

Proof of Theorem fundcmpsurinj
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abrexexg 7893 . . . 4 (𝐴𝑉 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∈ V)
21adantl 482 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∈ V)
3 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
43sneqd 4598 . . . . . . . 8 (𝑥 = 𝑦 → {(𝐹𝑥)} = {(𝐹𝑦)})
54imaeq2d 6013 . . . . . . 7 (𝑥 = 𝑦 → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ {(𝐹𝑦)}))
65eqeq2d 2747 . . . . . 6 (𝑥 = 𝑦 → (𝑧 = (𝐹 “ {(𝐹𝑥)}) ↔ 𝑧 = (𝐹 “ {(𝐹𝑦)})))
76cbvrexvw 3226 . . . . 5 (∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)}) ↔ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)}))
87abbii 2806 . . . 4 {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} = {𝑧 ∣ ∃𝑦𝐴 𝑧 = (𝐹 “ {(𝐹𝑦)})}
98fundcmpsurinjpreimafv 45590 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔)))
10 foeq3 6754 . . . . 5 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (𝑔:𝐴onto𝑝𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}))
11 f1eq2 6734 . . . . 5 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (:𝑝1-1𝐵:{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵))
1210, 113anbi12d 1437 . . . 4 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → ((𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ (𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔))))
13122exbidv 1927 . . 3 (𝑝 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} → (∃𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ∃𝑔(𝑔:𝐴onto→{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})} ∧ :{𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}–1-1𝐵𝐹 = (𝑔))))
142, 9, 13spcedv 3557 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑝𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
15 exrot3 2165 . 2 (∃𝑝𝑔(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)) ↔ ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
1614, 15sylib 217 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑝(𝑔:𝐴onto𝑝:𝑝1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wrex 3073  Vcvv 3445  {csn 4586  ccnv 5632  cima 5636  ccom 5637  wf 6492  1-1wf1 6493  ontowfo 6494  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator