![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinj | Structured version Visualization version GIF version |
Description: Every function 𝐹:𝐴⟶𝐵 can be decomposed into a surjective and an injective function. (Contributed by AV, 13-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexexg 7940 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) |
3 | fveq2 6881 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
4 | 3 | sneqd 4632 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {(𝐹‘𝑥)} = {(𝐹‘𝑦)}) |
5 | 4 | imaeq2d 6049 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑦)})) |
6 | 5 | eqeq2d 2735 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)}))) |
7 | 6 | cbvrexvw 3227 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})) |
8 | 7 | abbii 2794 | . . . 4 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑦)})} |
9 | 8 | fundcmpsurinjpreimafv 46561 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
10 | foeq3 6793 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (𝑔:𝐴–onto→𝑝 ↔ 𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})})) | |
11 | f1eq2 6773 | . . . . 5 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (ℎ:𝑝–1-1→𝐵 ↔ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵)) | |
12 | 10, 11 | 3anbi12d 1433 | . . . 4 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → ((𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ (𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
13 | 12 | 2exbidv 1919 | . . 3 ⊢ (𝑝 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} → (∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ(𝑔:𝐴–onto→{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∧ ℎ:{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})}–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)))) |
14 | 2, 9, 13 | spcedv 3580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
15 | exrot3 2157 | . 2 ⊢ (∃𝑝∃𝑔∃ℎ(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔)) ↔ ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) | |
16 | 14, 15 | sylib 217 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → ∃𝑔∃ℎ∃𝑝(𝑔:𝐴–onto→𝑝 ∧ ℎ:𝑝–1-1→𝐵 ∧ 𝐹 = (ℎ ∘ 𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2701 ∃wrex 3062 Vcvv 3466 {csn 4620 ◡ccnv 5665 “ cima 5669 ∘ ccom 5670 ⟶wf 6529 –1-1→wf1 6530 –onto→wfo 6531 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |