![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn0 | Structured version Visualization version GIF version |
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
opabn0 | ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4307 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
2 | elopab 5485 | . . . 4 ⊢ (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
4 | exrot3 2166 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | opex 5422 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
6 | 5 | isseti 3461 | . . . . . 6 ⊢ ∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ |
7 | 19.41v 1954 | . . . . . 6 ⊢ (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 708 | . . . . 5 ⊢ (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1852 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 275 | . . 3 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 3, 10 | bitri 275 | . 2 ⊢ (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
12 | 1, 11 | bitri 275 | 1 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2944 ∅c0 4283 ⟨cop 4593 {copab 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-opab 5169 |
This theorem is referenced by: opab0 5512 csbopab 5513 dvdsrval 20075 thlle 21105 thlleOLD 21106 bcthlem5 24695 lgsquadlem3 26733 disjecxrn 36854 br1cosscnvxrn 36939 |
Copyright terms: Public domain | W3C validator |