MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn0 Structured version   Visualization version   GIF version

Theorem opabn0 5552
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
opabn0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)

Proof of Theorem opabn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4345 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 5526 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
32exbii 1850 . . 3 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 exrot3 2165 . . . 4 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 opex 5463 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
65isseti 3489 . . . . . 6 𝑧 𝑧 = ⟨𝑥, 𝑦
7 19.41v 1953 . . . . . 6 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
86, 7mpbiran 707 . . . . 5 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
982exbii 1851 . . . 4 (∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
104, 9bitri 274 . . 3 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
113, 10bitri 274 . 2 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
121, 11bitri 274 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  c0 4321  cop 4633  {copab 5209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210
This theorem is referenced by:  opab0  5553  csbopab  5554  dvdsrval  20167  thlle  21242  thlleOLD  21243  bcthlem5  24836  lgsquadlem3  26874  disjecxrn  37247  br1cosscnvxrn  37332
  Copyright terms: Public domain W3C validator