![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabn0 | Structured version Visualization version GIF version |
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.) |
Ref | Expression |
---|---|
opabn0 | ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4345 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
2 | elopab 5526 | . . . 4 ⊢ (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
3 | 2 | exbii 1850 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
4 | exrot3 2165 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
5 | opex 5463 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
6 | 5 | isseti 3489 | . . . . . 6 ⊢ ∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ |
7 | 19.41v 1953 | . . . . . 6 ⊢ (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
8 | 6, 7 | mpbiran 707 | . . . . 5 ⊢ (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑) |
9 | 8 | 2exbii 1851 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
10 | 4, 9 | bitri 274 | . . 3 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
11 | 3, 10 | bitri 274 | . 2 ⊢ (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
12 | 1, 11 | bitri 274 | 1 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 ⟨cop 4633 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 |
This theorem is referenced by: opab0 5553 csbopab 5554 dvdsrval 20167 thlle 21242 thlleOLD 21243 bcthlem5 24836 lgsquadlem3 26874 disjecxrn 37247 br1cosscnvxrn 37332 |
Copyright terms: Public domain | W3C validator |