| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabn0 | Structured version Visualization version GIF version | ||
| Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.) |
| Ref | Expression |
|---|---|
| opabn0 | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4353 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 2 | elopab 5532 | . . . 4 ⊢ (𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 3 | 2 | exbii 1848 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
| 4 | exrot3 2165 | . . . 4 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 5 | opex 5469 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 6 | 5 | isseti 3498 | . . . . . 6 ⊢ ∃𝑧 𝑧 = 〈𝑥, 𝑦〉 |
| 7 | 19.41v 1949 | . . . . . 6 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑧 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 8 | 6, 7 | mpbiran 709 | . . . . 5 ⊢ (∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑) |
| 9 | 8 | 2exbii 1849 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
| 10 | 4, 9 | bitri 275 | . . 3 ⊢ (∃𝑧∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦𝜑) |
| 11 | 3, 10 | bitri 275 | . 2 ⊢ (∃𝑧 𝑧 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦𝜑) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥∃𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∅c0 4333 〈cop 4632 {copab 5205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 |
| This theorem is referenced by: opab0 5559 csbopab 5560 dvdsrval 20361 thlle 21716 thlleOLD 21717 bcthlem5 25362 lgsquadlem3 27426 disjecxrn 38390 br1cosscnvxrn 38475 |
| Copyright terms: Public domain | W3C validator |