MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn0 Structured version   Visualization version   GIF version

Theorem opabn0 5428
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
opabn0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)

Proof of Theorem opabn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4294 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 5402 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
32exbii 1849 . . 3 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 exrot3 2173 . . . 4 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 opex 5344 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
65isseti 3495 . . . . . 6 𝑧 𝑧 = ⟨𝑥, 𝑦
7 19.41v 1951 . . . . . 6 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
86, 7mpbiran 708 . . . . 5 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
982exbii 1850 . . . 4 (∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
104, 9bitri 278 . . 3 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
113, 10bitri 278 . 2 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
121, 11bitri 278 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  c0 4277  cop 4557  {copab 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-v 3483  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-sn 4552  df-pr 4554  df-op 4558  df-opab 5116
This theorem is referenced by:  opab0  5429  csbopab  5430  dvdsrval  19401  thlle  20844  bcthlem5  23938  lgsquadlem3  25972  br1cosscnvxrn  35820
  Copyright terms: Public domain W3C validator