MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn0 Structured version   Visualization version   GIF version

Theorem opabn0 5405
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
opabn0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)

Proof of Theorem opabn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4260 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 5379 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
32exbii 1849 . . 3 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 exrot3 2169 . . . 4 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 opex 5321 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
65isseti 3455 . . . . . 6 𝑧 𝑧 = ⟨𝑥, 𝑦
7 19.41v 1950 . . . . . 6 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
86, 7mpbiran 708 . . . . 5 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
982exbii 1850 . . . 4 (∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
104, 9bitri 278 . . 3 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
113, 10bitri 278 . 2 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
121, 11bitri 278 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  c0 4243  cop 4531  {copab 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093
This theorem is referenced by:  opab0  5406  csbopab  5407  dvdsrval  19391  thlle  20386  bcthlem5  23932  lgsquadlem3  25966  br1cosscnvxrn  35874
  Copyright terms: Public domain W3C validator