MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabn0 Structured version   Visualization version   GIF version

Theorem opabn0 5442
Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
Assertion
Ref Expression
opabn0 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)

Proof of Theorem opabn0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4312 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 elopab 5416 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
32exbii 1848 . . 3 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
4 exrot3 2172 . . . 4 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 opex 5358 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
65isseti 3510 . . . . . 6 𝑧 𝑧 = ⟨𝑥, 𝑦
7 19.41v 1950 . . . . . 6 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑧 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
86, 7mpbiran 707 . . . . 5 (∃𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
982exbii 1849 . . . 4 (∃𝑥𝑦𝑧(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
104, 9bitri 277 . . 3 (∃𝑧𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
113, 10bitri 277 . 2 (∃𝑧 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦𝜑)
121, 11bitri 277 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  c0 4293  cop 4575  {copab 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-opab 5131
This theorem is referenced by:  opab0  5443  csbopab  5444  dvdsrval  19397  thlle  20843  bcthlem5  23933  lgsquadlem3  25960  br1cosscnvxrn  35716
  Copyright terms: Public domain W3C validator