Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvoprabOLD Structured version   Visualization version   GIF version

Theorem cnvoprabOLD 29947
Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7430 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnvoprabOLD.x 𝑥𝜓
cnvoprabOLD.y 𝑦𝜓
cnvoprabOLD.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprabOLD.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprabOLD {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧,𝑎)

Proof of Theorem cnvoprabOLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 excom 2206 . . . . . 6 (∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
2 nfv 2009 . . . . . . . . . . 11 𝑥 𝑤 = ⟨𝑎, 𝑧
3 cnvoprabOLD.x . . . . . . . . . . 11 𝑥𝜓
42, 3nfan 1998 . . . . . . . . . 10 𝑥(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
54nfex 2327 . . . . . . . . 9 𝑥𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
6 nfv 2009 . . . . . . . . . . . 12 𝑦 𝑤 = ⟨𝑎, 𝑧
7 cnvoprabOLD.y . . . . . . . . . . . 12 𝑦𝜓
86, 7nfan 1998 . . . . . . . . . . 11 𝑦(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
98nfex 2327 . . . . . . . . . 10 𝑦𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
10 opex 5088 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
11 opeq1 4559 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ⟨𝑎, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1211eqeq2d 2775 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑧⟩ ↔ 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
13 cnvoprabOLD.1 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
1412, 13anbi12d 624 . . . . . . . . . . 11 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
1510, 14spcev 3452 . . . . . . . . . 10 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
169, 15exlimi 2250 . . . . . . . . 9 (∃𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
175, 16exlimi 2250 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
18 cnvoprabOLD.2 . . . . . . . . . . 11 (𝜓𝑎 ∈ (V × V))
1918adantl 473 . . . . . . . . . 10 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → 𝑎 ∈ (V × V))
20 fvex 6388 . . . . . . . . . . 11 (1st𝑎) ∈ V
21 fvex 6388 . . . . . . . . . . 11 (2nd𝑎) ∈ V
22 eqcom 2772 . . . . . . . . . . . . . . 15 ((1st𝑎) = 𝑥𝑥 = (1st𝑎))
23 eqcom 2772 . . . . . . . . . . . . . . 15 ((2nd𝑎) = 𝑦𝑦 = (2nd𝑎))
2422, 23anbi12i 620 . . . . . . . . . . . . . 14 (((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦) ↔ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎)))
25 eqopi 7402 . . . . . . . . . . . . . 14 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦)) → 𝑎 = ⟨𝑥, 𝑦⟩)
2624, 25sylan2br 588 . . . . . . . . . . . . 13 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → 𝑎 = ⟨𝑥, 𝑦⟩)
2714bicomd 214 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
294, 8, 28spc2ed 29768 . . . . . . . . . . 11 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) ∈ V ∧ (2nd𝑎) ∈ V)) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3020, 21, 29mpanr12 696 . . . . . . . . . 10 (𝑎 ∈ (V × V) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3119, 30mpcom 38 . . . . . . . . 9 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3231exlimiv 2025 . . . . . . . 8 (∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3317, 32impbii 200 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3433exbii 1943 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
35 exrot3 2209 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
361, 34, 353bitr2ri 291 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3736abbii 2882 . . . 4 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
38 df-oprab 6846 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
39 df-opab 4872 . . . 4 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
4037, 38, 393eqtr4ri 2798 . . 3 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4140cnveqi 5465 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
42 cnvopab 5716 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
4341, 42eqtr3i 2789 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wnf 1878  wcel 2155  {cab 2751  Vcvv 3350  cop 4340  {copab 4871   × cxp 5275  ccnv 5276  cfv 6068  {coprab 6843  1st c1st 7364  2nd c2nd 7365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-iota 6031  df-fun 6070  df-fv 6076  df-oprab 6846  df-1st 7366  df-2nd 7367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator