Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvoprabOLD Structured version   Visualization version   GIF version

Theorem cnvoprabOLD 30957
Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 7873 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnvoprabOLD.x 𝑥𝜓
cnvoprabOLD.y 𝑦𝜓
cnvoprabOLD.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprabOLD.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprabOLD {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧,𝑎)

Proof of Theorem cnvoprabOLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 excom 2164 . . . . . 6 (∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
2 nfv 1918 . . . . . . . . . . 11 𝑥 𝑤 = ⟨𝑎, 𝑧
3 cnvoprabOLD.x . . . . . . . . . . 11 𝑥𝜓
42, 3nfan 1903 . . . . . . . . . 10 𝑥(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
54nfex 2322 . . . . . . . . 9 𝑥𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
6 nfv 1918 . . . . . . . . . . . 12 𝑦 𝑤 = ⟨𝑎, 𝑧
7 cnvoprabOLD.y . . . . . . . . . . . 12 𝑦𝜓
86, 7nfan 1903 . . . . . . . . . . 11 𝑦(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
98nfex 2322 . . . . . . . . . 10 𝑦𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
10 opex 5373 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
11 opeq1 4801 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ⟨𝑎, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1211eqeq2d 2749 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑧⟩ ↔ 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
13 cnvoprabOLD.1 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
1412, 13anbi12d 630 . . . . . . . . . . 11 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
1510, 14spcev 3535 . . . . . . . . . 10 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
169, 15exlimi 2213 . . . . . . . . 9 (∃𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
175, 16exlimi 2213 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
18 cnvoprabOLD.2 . . . . . . . . . . 11 (𝜓𝑎 ∈ (V × V))
1918adantl 481 . . . . . . . . . 10 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → 𝑎 ∈ (V × V))
20 fvex 6769 . . . . . . . . . . 11 (1st𝑎) ∈ V
21 fvex 6769 . . . . . . . . . . 11 (2nd𝑎) ∈ V
22 eqcom 2745 . . . . . . . . . . . . . . 15 ((1st𝑎) = 𝑥𝑥 = (1st𝑎))
23 eqcom 2745 . . . . . . . . . . . . . . 15 ((2nd𝑎) = 𝑦𝑦 = (2nd𝑎))
2422, 23anbi12i 626 . . . . . . . . . . . . . 14 (((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦) ↔ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎)))
25 eqopi 7840 . . . . . . . . . . . . . 14 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦)) → 𝑎 = ⟨𝑥, 𝑦⟩)
2624, 25sylan2br 594 . . . . . . . . . . . . 13 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → 𝑎 = ⟨𝑥, 𝑦⟩)
2714bicomd 222 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
294, 8, 28spc2ed 3530 . . . . . . . . . . 11 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) ∈ V ∧ (2nd𝑎) ∈ V)) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3020, 21, 29mpanr12 701 . . . . . . . . . 10 (𝑎 ∈ (V × V) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3119, 30mpcom 38 . . . . . . . . 9 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3231exlimiv 1934 . . . . . . . 8 (∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3317, 32impbii 208 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3433exbii 1851 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
35 exrot3 2167 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
361, 34, 353bitr2ri 299 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3736abbii 2809 . . . 4 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
38 df-oprab 7259 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
39 df-opab 5133 . . . 4 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
4037, 38, 393eqtr4ri 2777 . . 3 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4140cnveqi 5772 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
42 cnvopab 6031 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
4341, 42eqtr3i 2768 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  {cab 2715  Vcvv 3422  cop 4564  {copab 5132   × cxp 5578  ccnv 5579  cfv 6418  {coprab 7256  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-oprab 7259  df-1st 7804  df-2nd 7805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator