Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvoprabOLD Structured version   Visualization version   GIF version

Theorem cnvoprabOLD 32734
Description: The converse of a class abstraction of nested ordered pairs. Obsolete version of cnvoprab 8101 as of 16-Oct-2022, which has nonfreeness hypotheses instead of disjoint variable conditions. (Contributed by Thierry Arnoux, 17-Aug-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnvoprabOLD.x 𝑥𝜓
cnvoprabOLD.y 𝑦𝜓
cnvoprabOLD.1 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
cnvoprabOLD.2 (𝜓𝑎 ∈ (V × V))
Assertion
Ref Expression
cnvoprabOLD {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑎,𝑦,𝑧   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧,𝑎)

Proof of Theorem cnvoprabOLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 excom 2163 . . . . . 6 (∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
2 nfv 1913 . . . . . . . . . . 11 𝑥 𝑤 = ⟨𝑎, 𝑧
3 cnvoprabOLD.x . . . . . . . . . . 11 𝑥𝜓
42, 3nfan 1898 . . . . . . . . . 10 𝑥(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
54nfex 2328 . . . . . . . . 9 𝑥𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
6 nfv 1913 . . . . . . . . . . . 12 𝑦 𝑤 = ⟨𝑎, 𝑧
7 cnvoprabOLD.y . . . . . . . . . . . 12 𝑦𝜓
86, 7nfan 1898 . . . . . . . . . . 11 𝑦(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
98nfex 2328 . . . . . . . . . 10 𝑦𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)
10 opex 5484 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
11 opeq1 4897 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ⟨𝑎, 𝑧⟩ = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩)
1211eqeq2d 2751 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝑤 = ⟨𝑎, 𝑧⟩ ↔ 𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩))
13 cnvoprabOLD.1 . . . . . . . . . . . 12 (𝑎 = ⟨𝑥, 𝑦⟩ → (𝜓𝜑))
1412, 13anbi12d 631 . . . . . . . . . . 11 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) ↔ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
1510, 14spcev 3619 . . . . . . . . . 10 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
169, 15exlimi 2218 . . . . . . . . 9 (∃𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
175, 16exlimi 2218 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) → ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
18 cnvoprabOLD.2 . . . . . . . . . . 11 (𝜓𝑎 ∈ (V × V))
1918adantl 481 . . . . . . . . . 10 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → 𝑎 ∈ (V × V))
20 fvex 6933 . . . . . . . . . . 11 (1st𝑎) ∈ V
21 fvex 6933 . . . . . . . . . . 11 (2nd𝑎) ∈ V
22 eqcom 2747 . . . . . . . . . . . . . . 15 ((1st𝑎) = 𝑥𝑥 = (1st𝑎))
23 eqcom 2747 . . . . . . . . . . . . . . 15 ((2nd𝑎) = 𝑦𝑦 = (2nd𝑎))
2422, 23anbi12i 627 . . . . . . . . . . . . . 14 (((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦) ↔ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎)))
25 eqopi 8066 . . . . . . . . . . . . . 14 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) = 𝑥 ∧ (2nd𝑎) = 𝑦)) → 𝑎 = ⟨𝑥, 𝑦⟩)
2624, 25sylan2br 594 . . . . . . . . . . . . 13 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → 𝑎 = ⟨𝑥, 𝑦⟩)
2714bicomd 223 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑥, 𝑦⟩ → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝑎 ∈ (V × V) ∧ (𝑥 = (1st𝑎) ∧ 𝑦 = (2nd𝑎))) → ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)))
294, 8, 28spc2ed 3614 . . . . . . . . . . 11 ((𝑎 ∈ (V × V) ∧ ((1st𝑎) ∈ V ∧ (2nd𝑎) ∈ V)) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3020, 21, 29mpanr12 704 . . . . . . . . . 10 (𝑎 ∈ (V × V) → ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)))
3119, 30mpcom 38 . . . . . . . . 9 ((𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3231exlimiv 1929 . . . . . . . 8 (∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓) → ∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
3317, 32impbii 209 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3433exbii 1846 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑧𝑎(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
35 exrot3 2166 . . . . . 6 (∃𝑧𝑥𝑦(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑))
361, 34, 353bitr2ri 300 . . . . 5 (∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑) ↔ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓))
3736abbii 2812 . . . 4 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
38 df-oprab 7452 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
39 df-opab 5229 . . . 4 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑎𝑧(𝑤 = ⟨𝑎, 𝑧⟩ ∧ 𝜓)}
4037, 38, 393eqtr4ri 2779 . . 3 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
4140cnveqi 5899 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
42 cnvopab 6169 . 2 {⟨𝑎, 𝑧⟩ ∣ 𝜓} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
4341, 42eqtr3i 2770 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑧, 𝑎⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wnf 1781  wcel 2108  {cab 2717  Vcvv 3488  cop 4654  {copab 5228   × cxp 5698  ccnv 5699  cfv 6573  {coprab 7449  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-oprab 7452  df-1st 8030  df-2nd 8031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator