| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp00 | Structured version Visualization version GIF version | ||
| Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp00 | ⊢ (∅↑↑𝑁) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finxpeq2 37348 | . . . 4 ⊢ (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅)) | |
| 2 | 1 | eqeq1d 2731 | . . 3 ⊢ (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅)) |
| 3 | finxpeq2 37348 | . . . 4 ⊢ (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚)) | |
| 4 | 3 | eqeq1d 2731 | . . 3 ⊢ (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅)) |
| 5 | finxpeq2 37348 | . . . 4 ⊢ (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚)) | |
| 6 | 5 | eqeq1d 2731 | . . 3 ⊢ (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅)) |
| 7 | finxpeq2 37348 | . . . 4 ⊢ (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁)) | |
| 8 | 7 | eqeq1d 2731 | . . 3 ⊢ (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅)) |
| 9 | finxp0 37352 | . . 3 ⊢ (∅↑↑∅) = ∅ | |
| 10 | suceq 6388 | . . . . . . . . 9 ⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) | |
| 11 | df-1o 8411 | . . . . . . . . 9 ⊢ 1o = suc ∅ | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . . . 8 ⊢ (𝑚 = ∅ → suc 𝑚 = 1o) |
| 13 | finxpeq2 37348 | . . . . . . . 8 ⊢ (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o)) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o)) |
| 15 | finxp1o 37353 | . . . . . . 7 ⊢ (∅↑↑1o) = ∅ | |
| 16 | 14, 15 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅) |
| 18 | finxpsuc 37359 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅)) | |
| 19 | xp0 6119 | . . . . . 6 ⊢ ((∅↑↑𝑚) × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2780 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅) |
| 21 | 17, 20 | pm2.61dane 3012 | . . . 4 ⊢ (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅) |
| 22 | 21 | a1d 25 | . . 3 ⊢ (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅)) |
| 23 | 2, 4, 6, 8, 9, 22 | finds 7852 | . 2 ⊢ (𝑁 ∈ ω → (∅↑↑𝑁) = ∅) |
| 24 | finxpnom 37362 | . 2 ⊢ (¬ 𝑁 ∈ ω → (∅↑↑𝑁) = ∅) | |
| 25 | 23, 24 | pm2.61i 182 | 1 ⊢ (∅↑↑𝑁) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 × cxp 5629 suc csuc 6322 ωcom 7822 1oc1o 8404 ↑↑cfinxp 37344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-en 8896 df-fin 8899 df-finxp 37345 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |