Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   GIF version

Theorem finxp00 35500
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00 (∅↑↑𝑁) = ∅

Proof of Theorem finxp00
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 35485 . . . 4 (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅))
21eqeq1d 2740 . . 3 (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅))
3 finxpeq2 35485 . . . 4 (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚))
43eqeq1d 2740 . . 3 (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅))
5 finxpeq2 35485 . . . 4 (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚))
65eqeq1d 2740 . . 3 (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅))
7 finxpeq2 35485 . . . 4 (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁))
87eqeq1d 2740 . . 3 (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅))
9 finxp0 35489 . . 3 (∅↑↑∅) = ∅
10 suceq 6316 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
11 df-1o 8267 . . . . . . . . 9 1o = suc ∅
1210, 11eqtr4di 2797 . . . . . . . 8 (𝑚 = ∅ → suc 𝑚 = 1o)
13 finxpeq2 35485 . . . . . . . 8 (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o))
1412, 13syl 17 . . . . . . 7 (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o))
15 finxp1o 35490 . . . . . . 7 (∅↑↑1o) = ∅
1614, 15eqtrdi 2795 . . . . . 6 (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅)
1716adantl 481 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅)
18 finxpsuc 35496 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅))
19 xp0 6050 . . . . . 6 ((∅↑↑𝑚) × ∅) = ∅
2018, 19eqtrdi 2795 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅)
2117, 20pm2.61dane 3031 . . . 4 (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅)
2221a1d 25 . . 3 (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅))
232, 4, 6, 8, 9, 22finds 7719 . 2 (𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
24 finxpnom 35499 . 2 𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
2523, 24pm2.61i 182 1 (∅↑↑𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253   × cxp 5578  suc csuc 6253  ωcom 7687  1oc1o 8260  ↑↑cfinxp 35481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-en 8692  df-fin 8695  df-finxp 35482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator