![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp00 | Structured version Visualization version GIF version |
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp00 | ⊢ (∅↑↑𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finxpeq2 37353 | . . . 4 ⊢ (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅)) | |
2 | 1 | eqeq1d 2742 | . . 3 ⊢ (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅)) |
3 | finxpeq2 37353 | . . . 4 ⊢ (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚)) | |
4 | 3 | eqeq1d 2742 | . . 3 ⊢ (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅)) |
5 | finxpeq2 37353 | . . . 4 ⊢ (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚)) | |
6 | 5 | eqeq1d 2742 | . . 3 ⊢ (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅)) |
7 | finxpeq2 37353 | . . . 4 ⊢ (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁)) | |
8 | 7 | eqeq1d 2742 | . . 3 ⊢ (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅)) |
9 | finxp0 37357 | . . 3 ⊢ (∅↑↑∅) = ∅ | |
10 | suceq 6461 | . . . . . . . . 9 ⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) | |
11 | df-1o 8522 | . . . . . . . . 9 ⊢ 1o = suc ∅ | |
12 | 10, 11 | eqtr4di 2798 | . . . . . . . 8 ⊢ (𝑚 = ∅ → suc 𝑚 = 1o) |
13 | finxpeq2 37353 | . . . . . . . 8 ⊢ (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o)) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o)) |
15 | finxp1o 37358 | . . . . . . 7 ⊢ (∅↑↑1o) = ∅ | |
16 | 14, 15 | eqtrdi 2796 | . . . . . 6 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅) |
18 | finxpsuc 37364 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅)) | |
19 | xp0 6189 | . . . . . 6 ⊢ ((∅↑↑𝑚) × ∅) = ∅ | |
20 | 18, 19 | eqtrdi 2796 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅) |
21 | 17, 20 | pm2.61dane 3035 | . . . 4 ⊢ (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅) |
22 | 21 | a1d 25 | . . 3 ⊢ (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅)) |
23 | 2, 4, 6, 8, 9, 22 | finds 7936 | . 2 ⊢ (𝑁 ∈ ω → (∅↑↑𝑁) = ∅) |
24 | finxpnom 37367 | . 2 ⊢ (¬ 𝑁 ∈ ω → (∅↑↑𝑁) = ∅) | |
25 | 23, 24 | pm2.61i 182 | 1 ⊢ (∅↑↑𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 × cxp 5698 suc csuc 6397 ωcom 7903 1oc1o 8515 ↑↑cfinxp 37349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-en 9004 df-fin 9007 df-finxp 37350 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |