| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp00 | Structured version Visualization version GIF version | ||
| Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp00 | ⊢ (∅↑↑𝑁) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finxpeq2 37405 | . . . 4 ⊢ (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅)) | |
| 2 | 1 | eqeq1d 2737 | . . 3 ⊢ (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅)) |
| 3 | finxpeq2 37405 | . . . 4 ⊢ (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚)) | |
| 4 | 3 | eqeq1d 2737 | . . 3 ⊢ (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅)) |
| 5 | finxpeq2 37405 | . . . 4 ⊢ (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚)) | |
| 6 | 5 | eqeq1d 2737 | . . 3 ⊢ (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅)) |
| 7 | finxpeq2 37405 | . . . 4 ⊢ (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁)) | |
| 8 | 7 | eqeq1d 2737 | . . 3 ⊢ (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅)) |
| 9 | finxp0 37409 | . . 3 ⊢ (∅↑↑∅) = ∅ | |
| 10 | suceq 6419 | . . . . . . . . 9 ⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) | |
| 11 | df-1o 8480 | . . . . . . . . 9 ⊢ 1o = suc ∅ | |
| 12 | 10, 11 | eqtr4di 2788 | . . . . . . . 8 ⊢ (𝑚 = ∅ → suc 𝑚 = 1o) |
| 13 | finxpeq2 37405 | . . . . . . . 8 ⊢ (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o)) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o)) |
| 15 | finxp1o 37410 | . . . . . . 7 ⊢ (∅↑↑1o) = ∅ | |
| 16 | 14, 15 | eqtrdi 2786 | . . . . . 6 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅) |
| 18 | finxpsuc 37416 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅)) | |
| 19 | xp0 6147 | . . . . . 6 ⊢ ((∅↑↑𝑚) × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2786 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅) |
| 21 | 17, 20 | pm2.61dane 3019 | . . . 4 ⊢ (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅) |
| 22 | 21 | a1d 25 | . . 3 ⊢ (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅)) |
| 23 | 2, 4, 6, 8, 9, 22 | finds 7892 | . 2 ⊢ (𝑁 ∈ ω → (∅↑↑𝑁) = ∅) |
| 24 | finxpnom 37419 | . 2 ⊢ (¬ 𝑁 ∈ ω → (∅↑↑𝑁) = ∅) | |
| 25 | 23, 24 | pm2.61i 182 | 1 ⊢ (∅↑↑𝑁) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 × cxp 5652 suc csuc 6354 ωcom 7861 1oc1o 8473 ↑↑cfinxp 37401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-en 8960 df-fin 8963 df-finxp 37402 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |