Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   GIF version

Theorem finxp00 36188
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00 (∅↑↑𝑁) = ∅

Proof of Theorem finxp00
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 36173 . . . 4 (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅))
21eqeq1d 2735 . . 3 (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅))
3 finxpeq2 36173 . . . 4 (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚))
43eqeq1d 2735 . . 3 (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅))
5 finxpeq2 36173 . . . 4 (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚))
65eqeq1d 2735 . . 3 (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅))
7 finxpeq2 36173 . . . 4 (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁))
87eqeq1d 2735 . . 3 (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅))
9 finxp0 36177 . . 3 (∅↑↑∅) = ∅
10 suceq 6422 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
11 df-1o 8453 . . . . . . . . 9 1o = suc ∅
1210, 11eqtr4di 2791 . . . . . . . 8 (𝑚 = ∅ → suc 𝑚 = 1o)
13 finxpeq2 36173 . . . . . . . 8 (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o))
1412, 13syl 17 . . . . . . 7 (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o))
15 finxp1o 36178 . . . . . . 7 (∅↑↑1o) = ∅
1614, 15eqtrdi 2789 . . . . . 6 (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅)
1716adantl 483 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅)
18 finxpsuc 36184 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅))
19 xp0 6149 . . . . . 6 ((∅↑↑𝑚) × ∅) = ∅
2018, 19eqtrdi 2789 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅)
2117, 20pm2.61dane 3030 . . . 4 (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅)
2221a1d 25 . . 3 (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅))
232, 4, 6, 8, 9, 22finds 7876 . 2 (𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
24 finxpnom 36187 . 2 𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
2523, 24pm2.61i 182 1 (∅↑↑𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wne 2941  c0 4320   × cxp 5670  suc csuc 6358  ωcom 7842  1oc1o 8446  ↑↑cfinxp 36169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-oadd 8457  df-en 8928  df-fin 8931  df-finxp 36170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator