Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp00 | Structured version Visualization version GIF version |
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp00 | ⊢ (∅↑↑𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finxpeq2 35485 | . . . 4 ⊢ (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅)) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅)) |
3 | finxpeq2 35485 | . . . 4 ⊢ (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚)) | |
4 | 3 | eqeq1d 2740 | . . 3 ⊢ (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅)) |
5 | finxpeq2 35485 | . . . 4 ⊢ (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚)) | |
6 | 5 | eqeq1d 2740 | . . 3 ⊢ (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅)) |
7 | finxpeq2 35485 | . . . 4 ⊢ (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁)) | |
8 | 7 | eqeq1d 2740 | . . 3 ⊢ (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅)) |
9 | finxp0 35489 | . . 3 ⊢ (∅↑↑∅) = ∅ | |
10 | suceq 6316 | . . . . . . . . 9 ⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) | |
11 | df-1o 8267 | . . . . . . . . 9 ⊢ 1o = suc ∅ | |
12 | 10, 11 | eqtr4di 2797 | . . . . . . . 8 ⊢ (𝑚 = ∅ → suc 𝑚 = 1o) |
13 | finxpeq2 35485 | . . . . . . . 8 ⊢ (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o)) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o)) |
15 | finxp1o 35490 | . . . . . . 7 ⊢ (∅↑↑1o) = ∅ | |
16 | 14, 15 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅) |
18 | finxpsuc 35496 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅)) | |
19 | xp0 6050 | . . . . . 6 ⊢ ((∅↑↑𝑚) × ∅) = ∅ | |
20 | 18, 19 | eqtrdi 2795 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅) |
21 | 17, 20 | pm2.61dane 3031 | . . . 4 ⊢ (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅) |
22 | 21 | a1d 25 | . . 3 ⊢ (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅)) |
23 | 2, 4, 6, 8, 9, 22 | finds 7719 | . 2 ⊢ (𝑁 ∈ ω → (∅↑↑𝑁) = ∅) |
24 | finxpnom 35499 | . 2 ⊢ (¬ 𝑁 ∈ ω → (∅↑↑𝑁) = ∅) | |
25 | 23, 24 | pm2.61i 182 | 1 ⊢ (∅↑↑𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 × cxp 5578 suc csuc 6253 ωcom 7687 1oc1o 8260 ↑↑cfinxp 35481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-en 8692 df-fin 8695 df-finxp 35482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |