| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp00 | Structured version Visualization version GIF version | ||
| Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp00 | ⊢ (∅↑↑𝑁) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finxpeq2 37363 | . . . 4 ⊢ (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅)) | |
| 2 | 1 | eqeq1d 2736 | . . 3 ⊢ (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅)) |
| 3 | finxpeq2 37363 | . . . 4 ⊢ (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚)) | |
| 4 | 3 | eqeq1d 2736 | . . 3 ⊢ (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅)) |
| 5 | finxpeq2 37363 | . . . 4 ⊢ (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚)) | |
| 6 | 5 | eqeq1d 2736 | . . 3 ⊢ (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅)) |
| 7 | finxpeq2 37363 | . . . 4 ⊢ (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁)) | |
| 8 | 7 | eqeq1d 2736 | . . 3 ⊢ (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅)) |
| 9 | finxp0 37367 | . . 3 ⊢ (∅↑↑∅) = ∅ | |
| 10 | suceq 6430 | . . . . . . . . 9 ⊢ (𝑚 = ∅ → suc 𝑚 = suc ∅) | |
| 11 | df-1o 8488 | . . . . . . . . 9 ⊢ 1o = suc ∅ | |
| 12 | 10, 11 | eqtr4di 2787 | . . . . . . . 8 ⊢ (𝑚 = ∅ → suc 𝑚 = 1o) |
| 13 | finxpeq2 37363 | . . . . . . . 8 ⊢ (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o)) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o)) |
| 15 | finxp1o 37368 | . . . . . . 7 ⊢ (∅↑↑1o) = ∅ | |
| 16 | 14, 15 | eqtrdi 2785 | . . . . . 6 ⊢ (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅) |
| 18 | finxpsuc 37374 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅)) | |
| 19 | xp0 6158 | . . . . . 6 ⊢ ((∅↑↑𝑚) × ∅) = ∅ | |
| 20 | 18, 19 | eqtrdi 2785 | . . . . 5 ⊢ ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅) |
| 21 | 17, 20 | pm2.61dane 3018 | . . . 4 ⊢ (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅) |
| 22 | 21 | a1d 25 | . . 3 ⊢ (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅)) |
| 23 | 2, 4, 6, 8, 9, 22 | finds 7900 | . 2 ⊢ (𝑁 ∈ ω → (∅↑↑𝑁) = ∅) |
| 24 | finxpnom 37377 | . 2 ⊢ (¬ 𝑁 ∈ ω → (∅↑↑𝑁) = ∅) | |
| 25 | 23, 24 | pm2.61i 182 | 1 ⊢ (∅↑↑𝑁) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 × cxp 5663 suc csuc 6365 ωcom 7869 1oc1o 8481 ↑↑cfinxp 37359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-en 8968 df-fin 8971 df-finxp 37360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |