Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   GIF version

Theorem finxp00 34686
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00 (∅↑↑𝑁) = ∅

Proof of Theorem finxp00
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 34671 . . . 4 (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅))
21eqeq1d 2823 . . 3 (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅))
3 finxpeq2 34671 . . . 4 (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚))
43eqeq1d 2823 . . 3 (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅))
5 finxpeq2 34671 . . . 4 (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚))
65eqeq1d 2823 . . 3 (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅))
7 finxpeq2 34671 . . . 4 (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁))
87eqeq1d 2823 . . 3 (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅))
9 finxp0 34675 . . 3 (∅↑↑∅) = ∅
10 suceq 6256 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
11 df-1o 8102 . . . . . . . . 9 1o = suc ∅
1210, 11syl6eqr 2874 . . . . . . . 8 (𝑚 = ∅ → suc 𝑚 = 1o)
13 finxpeq2 34671 . . . . . . . 8 (suc 𝑚 = 1o → (∅↑↑suc 𝑚) = (∅↑↑1o))
1412, 13syl 17 . . . . . . 7 (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1o))
15 finxp1o 34676 . . . . . . 7 (∅↑↑1o) = ∅
1614, 15syl6eq 2872 . . . . . 6 (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅)
1716adantl 484 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅)
18 finxpsuc 34682 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅))
19 xp0 6015 . . . . . 6 ((∅↑↑𝑚) × ∅) = ∅
2018, 19syl6eq 2872 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅)
2117, 20pm2.61dane 3104 . . . 4 (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅)
2221a1d 25 . . 3 (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅))
232, 4, 6, 8, 9, 22finds 7608 . 2 (𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
24 finxpnom 34685 . 2 𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
2523, 24pm2.61i 184 1 (∅↑↑𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  wne 3016  c0 4291   × cxp 5553  suc csuc 6193  ωcom 7580  1oc1o 8095  ↑↑cfinxp 34667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-finxp 34668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator