Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp00 Structured version   Visualization version   GIF version

Theorem finxp00 33604
Description: Cartesian exponentiation of the empty set to any power is the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp00 (∅↑↑𝑁) = ∅

Proof of Theorem finxp00
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 finxpeq2 33589 . . . 4 (𝑛 = ∅ → (∅↑↑𝑛) = (∅↑↑∅))
21eqeq1d 2767 . . 3 (𝑛 = ∅ → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑∅) = ∅))
3 finxpeq2 33589 . . . 4 (𝑛 = 𝑚 → (∅↑↑𝑛) = (∅↑↑𝑚))
43eqeq1d 2767 . . 3 (𝑛 = 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑚) = ∅))
5 finxpeq2 33589 . . . 4 (𝑛 = suc 𝑚 → (∅↑↑𝑛) = (∅↑↑suc 𝑚))
65eqeq1d 2767 . . 3 (𝑛 = suc 𝑚 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑suc 𝑚) = ∅))
7 finxpeq2 33589 . . . 4 (𝑛 = 𝑁 → (∅↑↑𝑛) = (∅↑↑𝑁))
87eqeq1d 2767 . . 3 (𝑛 = 𝑁 → ((∅↑↑𝑛) = ∅ ↔ (∅↑↑𝑁) = ∅))
9 finxp0 33593 . . 3 (∅↑↑∅) = ∅
10 suceq 5973 . . . . . . . . 9 (𝑚 = ∅ → suc 𝑚 = suc ∅)
11 df-1o 7764 . . . . . . . . 9 1𝑜 = suc ∅
1210, 11syl6eqr 2817 . . . . . . . 8 (𝑚 = ∅ → suc 𝑚 = 1𝑜)
13 finxpeq2 33589 . . . . . . . 8 (suc 𝑚 = 1𝑜 → (∅↑↑suc 𝑚) = (∅↑↑1𝑜))
1412, 13syl 17 . . . . . . 7 (𝑚 = ∅ → (∅↑↑suc 𝑚) = (∅↑↑1𝑜))
15 finxp1o 33594 . . . . . . 7 (∅↑↑1𝑜) = ∅
1614, 15syl6eq 2815 . . . . . 6 (𝑚 = ∅ → (∅↑↑suc 𝑚) = ∅)
1716adantl 473 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 = ∅) → (∅↑↑suc 𝑚) = ∅)
18 finxpsuc 33600 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ((∅↑↑𝑚) × ∅))
19 xp0 5735 . . . . . 6 ((∅↑↑𝑚) × ∅) = ∅
2018, 19syl6eq 2815 . . . . 5 ((𝑚 ∈ ω ∧ 𝑚 ≠ ∅) → (∅↑↑suc 𝑚) = ∅)
2117, 20pm2.61dane 3024 . . . 4 (𝑚 ∈ ω → (∅↑↑suc 𝑚) = ∅)
2221a1d 25 . . 3 (𝑚 ∈ ω → ((∅↑↑𝑚) = ∅ → (∅↑↑suc 𝑚) = ∅))
232, 4, 6, 8, 9, 22finds 7290 . 2 (𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
24 finxpnom 33603 . 2 𝑁 ∈ ω → (∅↑↑𝑁) = ∅)
2523, 24pm2.61i 176 1 (∅↑↑𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wcel 2155  wne 2937  c0 4079   × cxp 5275  suc csuc 5910  ωcom 7263  1𝑜c1o 7757  ↑↑cfinxp 33585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-finxp 33586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator