| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fipjust | Structured version Visualization version GIF version | ||
| Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| fipjust | ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 4162 | . . 3 ⊢ (𝑢 = 𝑥 → (𝑢 ∩ 𝑣) = (𝑥 ∩ 𝑣)) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑢 = 𝑥 → ((𝑢 ∩ 𝑣) ∈ 𝐴 ↔ (𝑥 ∩ 𝑣) ∈ 𝐴)) |
| 3 | ineq2 4163 | . . 3 ⊢ (𝑣 = 𝑦 → (𝑥 ∩ 𝑣) = (𝑥 ∩ 𝑦)) | |
| 4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑣 = 𝑦 → ((𝑥 ∩ 𝑣) ∈ 𝐴 ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) |
| 5 | 2, 4 | cbvral2vw 3215 | 1 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-in 3905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |