Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fipjust Structured version   Visualization version   GIF version

Theorem fipjust 43522
Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.)
Assertion
Ref Expression
fipjust (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Distinct variable group:   𝑣,𝑢,𝑥,𝑦,𝐴

Proof of Theorem fipjust
StepHypRef Expression
1 ineq1 4234 . . 3 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
21eleq1d 2829 . 2 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝐴 ↔ (𝑥𝑣) ∈ 𝐴))
3 ineq2 4235 . . 3 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
43eleq1d 2829 . 2 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝐴 ↔ (𝑥𝑦) ∈ 𝐴))
52, 4cbvral2vw 3247 1 (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3067  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-in 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator