Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fipjust Structured version   Visualization version   GIF version

Theorem fipjust 38820
Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by Richard Penner, 1-Jan-2020.)
Assertion
Ref Expression
fipjust (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Distinct variable group:   𝑣,𝑢,𝑥,𝑦,𝐴

Proof of Theorem fipjust
StepHypRef Expression
1 ineq1 4029 . . 3 (𝑢 = 𝑥 → (𝑢𝑣) = (𝑥𝑣))
21eleq1d 2843 . 2 (𝑢 = 𝑥 → ((𝑢𝑣) ∈ 𝐴 ↔ (𝑥𝑣) ∈ 𝐴))
3 ineq2 4030 . . 3 (𝑣 = 𝑦 → (𝑥𝑣) = (𝑥𝑦))
43eleq1d 2843 . 2 (𝑣 = 𝑦 → ((𝑥𝑣) ∈ 𝐴 ↔ (𝑥𝑦) ∈ 𝐴))
52, 4cbvral2v 3374 1 (∀𝑢𝐴𝑣𝐴 (𝑢𝑣) ∈ 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2106  wral 3089  cin 3790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-v 3399  df-in 3798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator