![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fipjust | Structured version Visualization version GIF version |
Description: A definition of the finite intersection property of a class based on closure under pairwise intersection of its elements is independent of the dummy variables. (Contributed by RP, 1-Jan-2020.) |
Ref | Expression |
---|---|
fipjust | ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4166 | . . 3 ⊢ (𝑢 = 𝑥 → (𝑢 ∩ 𝑣) = (𝑥 ∩ 𝑣)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑢 = 𝑥 → ((𝑢 ∩ 𝑣) ∈ 𝐴 ↔ (𝑥 ∩ 𝑣) ∈ 𝐴)) |
3 | ineq2 4167 | . . 3 ⊢ (𝑣 = 𝑦 → (𝑥 ∩ 𝑣) = (𝑥 ∩ 𝑦)) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑣 = 𝑦 → ((𝑥 ∩ 𝑣) ∈ 𝐴 ↔ (𝑥 ∩ 𝑦) ∈ 𝐴)) |
5 | 2, 4 | cbvral2vw 3228 | 1 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 ∩ 𝑣) ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 ∀wral 3065 ∩ cin 3910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rab 3409 df-in 3918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |