Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi Structured version   Visualization version   GIF version

Theorem pwinfi 43554
Description: The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))

Proof of Theorem pwinfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vuniex 7758 . . . 4 𝑥 ∈ V
2 vpwex 5383 . . . 4 𝒫 𝑥 ∈ V
31, 2pm3.2i 470 . . 3 ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
43rgenw 3063 . 2 𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
5 pwinfig 43551 . 2 (∀𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)))
64, 5ax-mp 5 1 (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2106  wral 3059  Vcvv 3478  cdif 3960  𝒫 cpw 4605   cuni 4912  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator