Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfi Structured version   Visualization version   GIF version

Theorem pwinfi 43522
Description: The powerclass of an infinite set is an infinite set, and vice-versa. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfi (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))

Proof of Theorem pwinfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vuniex 7742 . . . 4 𝑥 ∈ V
2 vpwex 5359 . . . 4 𝒫 𝑥 ∈ V
31, 2pm3.2i 470 . . 3 ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
43rgenw 3054 . 2 𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V)
5 pwinfig 43519 . 2 (∀𝑥 ∈ V ( 𝑥 ∈ V ∧ 𝒫 𝑥 ∈ V) → (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin)))
64, 5ax-mp 5 1 (𝐴 ∈ (V ∖ Fin) ↔ 𝒫 𝐴 ∈ (V ∖ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2107  wral 3050  Vcvv 3464  cdif 3930  𝒫 cpw 4582   cuni 4889  Fincfn 8968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7871  df-1o 8489  df-en 8969  df-dom 8970  df-fin 8972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator