| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cllem0 | Structured version Visualization version GIF version | ||
| Description: The class of all sets with property 𝜑(𝑧) is closed under the binary operation on sets defined in 𝑅(𝑥, 𝑦). (Contributed by RP, 3-Jan-2020.) |
| Ref | Expression |
|---|---|
| cllem0.v | ⊢ 𝑉 = {𝑧 ∣ 𝜑} |
| cllem0.rex | ⊢ 𝑅 ∈ 𝑈 |
| cllem0.r | ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) |
| cllem0.x | ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) |
| cllem0.y | ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) |
| cllem0.closed | ⊢ ((𝜒 ∧ 𝜃) → 𝜓) |
| Ref | Expression |
|---|---|
| cllem0 | ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cllem0.rex | . . . . . . 7 ⊢ 𝑅 ∈ 𝑈 | |
| 2 | 1 | elexi 3503 | . . . . . 6 ⊢ 𝑅 ∈ V |
| 3 | cllem0.r | . . . . . 6 ⊢ (𝑧 = 𝑅 → (𝜑 ↔ 𝜓)) | |
| 4 | cllem0.v | . . . . . 6 ⊢ 𝑉 = {𝑧 ∣ 𝜑} | |
| 5 | 2, 3, 4 | elab2 3682 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 ↔ 𝜓) |
| 6 | 5 | ralbii 3093 | . . . 4 ⊢ (∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀𝑦 ∈ 𝑉 𝜓) |
| 7 | 6 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝜓) |
| 8 | df-ral 3062 | . . . 4 ⊢ (∀𝑦 ∈ 𝑉 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝑉 → 𝜓)) | |
| 9 | 8 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝜓 ↔ ∀𝑥 ∈ 𝑉 ∀𝑦(𝑦 ∈ 𝑉 → 𝜓)) |
| 10 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 ∀𝑦(𝑦 ∈ 𝑉 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝑉 → ∀𝑦(𝑦 ∈ 𝑉 → 𝜓))) | |
| 11 | 7, 9, 10 | 3bitri 297 | . 2 ⊢ (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 ↔ ∀𝑥(𝑥 ∈ 𝑉 → ∀𝑦(𝑦 ∈ 𝑉 → 𝜓))) |
| 12 | vex 3484 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 13 | cllem0.x | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝜑 ↔ 𝜒)) | |
| 14 | 12, 13, 4 | elab2 3682 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 ↔ 𝜒) |
| 15 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 16 | cllem0.y | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜃)) | |
| 17 | 15, 16, 4 | elab2 3682 | . . . . 5 ⊢ (𝑦 ∈ 𝑉 ↔ 𝜃) |
| 18 | cllem0.closed | . . . . 5 ⊢ ((𝜒 ∧ 𝜃) → 𝜓) | |
| 19 | 14, 17, 18 | syl2anb 598 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝜓) |
| 20 | 19 | ex 412 | . . 3 ⊢ (𝑥 ∈ 𝑉 → (𝑦 ∈ 𝑉 → 𝜓)) |
| 21 | 20 | alrimiv 1927 | . 2 ⊢ (𝑥 ∈ 𝑉 → ∀𝑦(𝑦 ∈ 𝑉 → 𝜓)) |
| 22 | 11, 21 | mpgbir 1799 | 1 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 𝑅 ∈ 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 |
| This theorem is referenced by: superficl 43580 superuncl 43581 ssficl 43582 ssuncl 43583 ssdifcl 43584 sssymdifcl 43585 trficl 43682 |
| Copyright terms: Public domain | W3C validator |