Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq1d | Structured version Visualization version GIF version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 21-Jun-1993.) Allow shortening of eleq1 2826. (Revised by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eleq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
eleq1d | ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqeq2d 2749 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) |
3 | 2 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ (𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶))) |
4 | 3 | exbidv 1925 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶) ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶))) |
5 | dfclel 2818 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐶)) | |
6 | dfclel 2818 | . 2 ⊢ (𝐵 ∈ 𝐶 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝑥 ∈ 𝐶)) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) |
Copyright terms: Public domain | W3C validator |