| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 5605 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
| 2 | soeq1 5567 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
| 4 | df-we 5593 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5593 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Or wor 5545 Fr wfr 5588 We wwe 5590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-br 5108 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 |
| This theorem is referenced by: weeq12d 5627 oieq1 9465 hartogslem1 9495 wemapwe 9650 infxpenlem 9966 dfac8b 9984 ac10ct 9987 canthnumlem 10601 canthp1lem2 10606 pwfseqlem4a 10614 pwfseqlem4 10615 ltbwe 21951 vitali 25514 numiunnum 36458 fin2so 37601 dnwech 43037 aomclem5 43047 aomclem6 43048 aomclem7 43049 |
| Copyright terms: Public domain | W3C validator |