| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 5588 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
| 2 | soeq1 5550 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
| 4 | df-we 5576 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5576 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Or wor 5528 Fr wfr 5571 We wwe 5573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1781 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-br 5096 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 |
| This theorem is referenced by: weeq12d 5610 oieq1 9407 hartogslem1 9437 wemapwe 9596 infxpenlem 9913 dfac8b 9931 ac10ct 9934 canthnumlem 10548 canthp1lem2 10553 pwfseqlem4a 10561 pwfseqlem4 10562 ltbwe 21982 vitali 25544 numiunnum 36537 fin2so 37670 dnwech 43168 aomclem5 43178 aomclem6 43179 aomclem7 43180 |
| Copyright terms: Public domain | W3C validator |