| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 5583 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
| 2 | soeq1 5545 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
| 4 | df-we 5571 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5571 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Or wor 5523 Fr wfr 5566 We wwe 5568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1781 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-br 5092 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 |
| This theorem is referenced by: weeq12d 5605 oieq1 9398 hartogslem1 9428 wemapwe 9587 infxpenlem 9904 dfac8b 9922 ac10ct 9925 canthnumlem 10539 canthp1lem2 10544 pwfseqlem4a 10552 pwfseqlem4 10553 ltbwe 21980 vitali 25542 numiunnum 36510 fin2so 37653 dnwech 43087 aomclem5 43097 aomclem6 43098 aomclem7 43099 |
| Copyright terms: Public domain | W3C validator |