| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 5613 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
| 2 | soeq1 5575 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
| 4 | df-we 5601 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5601 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Or wor 5553 Fr wfr 5596 We wwe 5598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-br 5116 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 |
| This theorem is referenced by: weeq12d 5635 oieq1 9483 hartogslem1 9513 wemapwe 9668 infxpenlem 9984 dfac8b 10002 ac10ct 10005 canthnumlem 10619 canthp1lem2 10624 pwfseqlem4a 10632 pwfseqlem4 10633 ltbwe 21957 vitali 25521 numiunnum 36455 fin2so 37598 dnwech 43009 aomclem5 43019 aomclem6 43020 aomclem7 43021 |
| Copyright terms: Public domain | W3C validator |