MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq1 Structured version   Visualization version   GIF version

Theorem weeq1 5676
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Proof of Theorem weeq1
StepHypRef Expression
1 freq1 5656 . . 3 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
2 soeq1 5618 . . 3 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
31, 2anbi12d 632 . 2 (𝑅 = 𝑆 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴)))
4 df-we 5643 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5643 . 2 (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537   Or wor 5596   Fr wfr 5638   We wwe 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1777  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-br 5149  df-po 5597  df-so 5598  df-fr 5641  df-we 5643
This theorem is referenced by:  weeq12d  5678  oieq1  9550  hartogslem1  9580  wemapwe  9735  infxpenlem  10051  dfac8b  10069  ac10ct  10072  canthnumlem  10686  canthp1lem2  10691  pwfseqlem4a  10699  pwfseqlem4  10700  ltbwe  22080  vitali  25662  numiunnum  36453  fin2so  37594  dnwech  43037  aomclem5  43047  aomclem6  43048  aomclem7  43049
  Copyright terms: Public domain W3C validator