MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq1 Structured version   Visualization version   GIF version

Theorem weeq1 5603
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Proof of Theorem weeq1
StepHypRef Expression
1 freq1 5583 . . 3 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
2 soeq1 5545 . . 3 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
31, 2anbi12d 632 . 2 (𝑅 = 𝑆 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴)))
4 df-we 5571 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5571 . 2 (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541   Or wor 5523   Fr wfr 5566   We wwe 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1781  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-br 5092  df-po 5524  df-so 5525  df-fr 5569  df-we 5571
This theorem is referenced by:  weeq12d  5605  oieq1  9398  hartogslem1  9428  wemapwe  9587  infxpenlem  9904  dfac8b  9922  ac10ct  9925  canthnumlem  10539  canthp1lem2  10544  pwfseqlem4a  10552  pwfseqlem4  10553  ltbwe  21980  vitali  25542  numiunnum  36510  fin2so  37653  dnwech  43087  aomclem5  43097  aomclem6  43098  aomclem7  43099
  Copyright terms: Public domain W3C validator