![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq1 5647 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
2 | soeq1 5610 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
3 | 1, 2 | anbi12d 629 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
4 | df-we 5634 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
5 | df-we 5634 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 Or wor 5588 Fr wfr 5629 We wwe 5631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-ex 1780 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-br 5150 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 |
This theorem is referenced by: oieq1 9511 hartogslem1 9541 wemapwe 9696 infxpenlem 10012 dfac8b 10030 ac10ct 10033 fpwwe2cbv 10629 fpwwe2lem2 10631 fpwwe2lem4 10633 fpwwecbv 10643 fpwwelem 10644 canthnumlem 10647 canthwelem 10649 canthwe 10650 canthp1lem2 10652 pwfseqlem4a 10660 pwfseqlem4 10661 ltbwe 21820 vitali 25364 fin2so 36780 weeq12d 42086 dnwech 42094 aomclem5 42104 aomclem6 42105 aomclem7 42106 |
Copyright terms: Public domain | W3C validator |