MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq1 Structured version   Visualization version   GIF version

Theorem weeq1 5687
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Proof of Theorem weeq1
StepHypRef Expression
1 freq1 5667 . . 3 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
2 soeq1 5629 . . 3 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
31, 2anbi12d 631 . 2 (𝑅 = 𝑆 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴)))
4 df-we 5654 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5654 . 2 (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537   Or wor 5606   Fr wfr 5649   We wwe 5651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-ex 1778  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-br 5167  df-po 5607  df-so 5608  df-fr 5652  df-we 5654
This theorem is referenced by:  weeq12d  5689  oieq1  9581  hartogslem1  9611  wemapwe  9766  infxpenlem  10082  dfac8b  10100  ac10ct  10103  canthnumlem  10717  canthp1lem2  10722  pwfseqlem4a  10730  pwfseqlem4  10731  ltbwe  22085  vitali  25667  numiunnum  36436  fin2so  37567  dnwech  43005  aomclem5  43015  aomclem6  43016  aomclem7  43017
  Copyright terms: Public domain W3C validator