MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq1 Structured version   Visualization version   GIF version

Theorem weeq1 5608
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Proof of Theorem weeq1
StepHypRef Expression
1 freq1 5588 . . 3 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
2 soeq1 5550 . . 3 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
31, 2anbi12d 632 . 2 (𝑅 = 𝑆 → ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴)))
4 df-we 5576 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
5 df-we 5576 . 2 (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴𝑆 Or 𝐴))
63, 4, 53bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541   Or wor 5528   Fr wfr 5571   We wwe 5573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1781  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-br 5096  df-po 5529  df-so 5530  df-fr 5574  df-we 5576
This theorem is referenced by:  weeq12d  5610  oieq1  9407  hartogslem1  9437  wemapwe  9596  infxpenlem  9913  dfac8b  9931  ac10ct  9934  canthnumlem  10548  canthp1lem2  10553  pwfseqlem4a  10561  pwfseqlem4  10562  ltbwe  21982  vitali  25544  numiunnum  36537  fin2so  37670  dnwech  43168  aomclem5  43178  aomclem6  43179  aomclem7  43180
  Copyright terms: Public domain W3C validator