| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| weeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq1 5590 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
| 2 | soeq1 5552 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴) ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴))) |
| 4 | df-we 5578 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) | |
| 5 | df-we 5578 | . 2 ⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ 𝑆 Or 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Or wor 5530 Fr wfr 5573 We wwe 5575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-br 5096 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 |
| This theorem is referenced by: weeq12d 5612 oieq1 9423 hartogslem1 9453 wemapwe 9612 infxpenlem 9926 dfac8b 9944 ac10ct 9947 canthnumlem 10561 canthp1lem2 10566 pwfseqlem4a 10574 pwfseqlem4 10575 ltbwe 21967 vitali 25530 numiunnum 36446 fin2so 37589 dnwech 43024 aomclem5 43034 aomclem6 43035 aomclem7 43036 |
| Copyright terms: Public domain | W3C validator |