MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess2 Structured version   Visualization version   GIF version

Theorem sess2 5631
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))

Proof of Theorem sess2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4032 . . 3 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V))
2 rabss2 4058 . . . . 5 (𝐴𝐵 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥})
3 ssexg 5303 . . . . . 6 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} ∧ {𝑦𝐵𝑦𝑅𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
43ex 412 . . . . 5 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
52, 4syl 17 . . . 4 (𝐴𝐵 → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
65ralimdv 3156 . . 3 (𝐴𝐵 → (∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
71, 6syld 47 . 2 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 5618 . 2 (𝑅 Se 𝐵 ↔ ∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V)
9 df-se 5618 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 296 1 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3050  {crab 3419  Vcvv 3463  wss 3931   class class class wbr 5123   Se wse 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rab 3420  df-v 3465  df-in 3938  df-ss 3948  df-se 5618
This theorem is referenced by:  seeq2  5636  wereu2  5662  frpomin  6340  fprlem1  8307  wfrlem5OLD  8335  frmin  9771  frrlem15  9779
  Copyright terms: Public domain W3C validator