MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sess2 Structured version   Visualization version   GIF version

Theorem sess2 5636
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
sess2 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))

Proof of Theorem sess2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssralv 4043 . . 3 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V))
2 rabss2 4068 . . . . 5 (𝐴𝐵 → {𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥})
3 ssexg 5314 . . . . . 6 (({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} ∧ {𝑦𝐵𝑦𝑅𝑥} ∈ V) → {𝑦𝐴𝑦𝑅𝑥} ∈ V)
43ex 412 . . . . 5 ({𝑦𝐴𝑦𝑅𝑥} ⊆ {𝑦𝐵𝑦𝑅𝑥} → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
52, 4syl 17 . . . 4 (𝐴𝐵 → ({𝑦𝐵𝑦𝑅𝑥} ∈ V → {𝑦𝐴𝑦𝑅𝑥} ∈ V))
65ralimdv 3161 . . 3 (𝐴𝐵 → (∀𝑥𝐴 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
71, 6syld 47 . 2 (𝐴𝐵 → (∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V → ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V))
8 df-se 5623 . 2 (𝑅 Se 𝐵 ↔ ∀𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} ∈ V)
9 df-se 5623 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
107, 8, 93imtr4g 296 1 (𝐴𝐵 → (𝑅 Se 𝐵𝑅 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wral 3053  {crab 3424  Vcvv 3466  wss 3941   class class class wbr 5139   Se wse 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rab 3425  df-v 3468  df-in 3948  df-ss 3958  df-se 5623
This theorem is referenced by:  seeq2  5640  wereu2  5664  frpomin  6332  fprlem1  8281  wfrlem5OLD  8309  frmin  9741  frrlem15  9749
  Copyright terms: Public domain W3C validator