![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sess2 | Structured version Visualization version GIF version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess2 | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 4043 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V)) | |
2 | rabss2 4068 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥}) | |
3 | ssexg 5314 | . . . . . 6 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 3 | ex 412 | . . . . 5 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
6 | 5 | ralimdv 3161 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
7 | 1, 6 | syld 47 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
8 | df-se 5623 | . 2 ⊢ (𝑅 Se 𝐵 ↔ ∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) | |
9 | df-se 5623 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3053 {crab 3424 Vcvv 3466 ⊆ wss 3941 class class class wbr 5139 Se wse 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rab 3425 df-v 3468 df-in 3948 df-ss 3958 df-se 5623 |
This theorem is referenced by: seeq2 5640 wereu2 5664 frpomin 6332 fprlem1 8281 wfrlem5OLD 8309 frmin 9741 frrlem15 9749 |
Copyright terms: Public domain | W3C validator |