| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sess2 | Structured version Visualization version GIF version | ||
| Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| sess2 | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 3998 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V)) | |
| 2 | rabss2 4023 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥}) | |
| 3 | ssexg 5256 | . . . . . 6 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 4 | 3 | ex 412 | . . . . 5 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 6 | 5 | ralimdv 3146 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 7 | 1, 6 | syld 47 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
| 8 | df-se 5565 | . 2 ⊢ (𝑅 Se 𝐵 ↔ ∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 9 | df-se 5565 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 10 | 7, 8, 9 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 Se wse 5562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-se 5565 |
| This theorem is referenced by: seeq2 5582 wereu2 5608 frpomin 6282 fprlem1 8225 frmin 9637 frrlem15 9645 |
| Copyright terms: Public domain | W3C validator |