| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funin | Structured version Visualization version GIF version | ||
| Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4236 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 2 | funss 6584 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3949 ⊆ wss 3950 Fun wfun 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ss 3967 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-fun 6562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |