| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funin | Structured version Visualization version GIF version | ||
| Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4208 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 2 | funss 6543 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3921 ⊆ wss 3922 Fun wfun 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-in 3929 df-ss 3939 df-br 5116 df-opab 5178 df-rel 5653 df-cnv 5654 df-co 5655 df-fun 6521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |