| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funin | Structured version Visualization version GIF version | ||
| Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4186 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 2 | funss 6508 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3897 ⊆ wss 3898 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-fun 6491 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |