| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funin | Structured version Visualization version GIF version | ||
| Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4182 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 2 | funss 6495 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3896 ⊆ wss 3897 Fun wfun 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-fun 6478 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |