![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funin | Structured version Visualization version GIF version |
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4029 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
2 | funss 6121 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3769 ⊆ wss 3770 Fun wfun 6096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-v 3388 df-in 3777 df-ss 3784 df-br 4845 df-opab 4907 df-rel 5320 df-cnv 5321 df-co 5322 df-fun 6104 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |