MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funin Structured version   Visualization version   GIF version

Theorem funin 6600
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin (Fun 𝐹 → Fun (𝐹𝐺))

Proof of Theorem funin
StepHypRef Expression
1 inss1 4208 . 2 (𝐹𝐺) ⊆ 𝐹
2 funss 6543 . 2 ((𝐹𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐺)))
31, 2ax-mp 5 1 (Fun 𝐹 → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3921  wss 3922  Fun wfun 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-in 3929  df-ss 3939  df-br 5116  df-opab 5178  df-rel 5653  df-cnv 5654  df-co 5655  df-fun 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator