![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funss | Structured version Visualization version GIF version |
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
funss | ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relss 5805 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
2 | coss1 5880 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐴)) | |
3 | cnvss 5897 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
4 | coss2 5881 | . . . . . 6 ⊢ (◡𝐴 ⊆ ◡𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
6 | 2, 5 | sstrd 4019 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
7 | sstr2 4015 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵) → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) |
9 | 1, 8 | anim12d 608 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ))) |
10 | df-fun 6575 | . 2 ⊢ (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I )) | |
11 | df-fun 6575 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 I cid 5592 ◡ccnv 5699 ∘ ccom 5704 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funeq 6598 funopab4 6615 funres 6620 fun0 6643 funcnvcnv 6645 funin 6654 funres11 6655 foimacnv 6879 funelss 8088 funsssuppss 8231 fsuppss 9452 strle1 17205 strssd 17253 pjpm 21751 subgrfun 29316 setrecsss 48793 |
Copyright terms: Public domain | W3C validator |