| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| funss | ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss 5726 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 2 | coss1 5799 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐴)) | |
| 3 | cnvss 5816 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 4 | coss2 5800 | . . . . . 6 ⊢ (◡𝐴 ⊆ ◡𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 6 | 2, 5 | sstrd 3941 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 7 | sstr2 3937 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵) → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) |
| 9 | 1, 8 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ))) |
| 10 | df-fun 6488 | . 2 ⊢ (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I )) | |
| 11 | df-fun 6488 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3898 I cid 5513 ◡ccnv 5618 ∘ ccom 5623 Rel wrel 5624 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6488 |
| This theorem is referenced by: funeq 6506 funopab4 6523 funres 6528 fun0 6551 funcnvcnv 6553 funin 6562 funres11 6563 foimacnv 6785 funelss 7985 funsssuppss 8126 fsuppss 9274 strle1 17071 strssd 17118 pjpm 21647 subgrfun 29261 setrecsss 49827 |
| Copyright terms: Public domain | W3C validator |