MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funss Structured version   Visualization version   GIF version

Theorem funss 6500
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 5722 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 5795 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 5812 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 5796 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3945 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3941 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 17 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 609 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 6483 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 6483 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 296 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3902   I cid 5510  ccnv 5615  ccom 5620  Rel wrel 5621  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3919  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-fun 6483
This theorem is referenced by:  funeq  6501  funopab4  6518  funres  6523  fun0  6546  funcnvcnv  6548  funin  6557  funres11  6558  foimacnv  6780  funelss  7979  funsssuppss  8120  fsuppss  9267  strle1  17066  strssd  17113  pjpm  21643  subgrfun  29257  setrecsss  49732
  Copyright terms: Public domain W3C validator