MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funss Structured version   Visualization version   GIF version

Theorem funss 6505
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 5726 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 5799 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 5816 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 5800 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3941 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3937 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 17 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 609 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 6488 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 6488 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 296 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3898   I cid 5513  ccnv 5618  ccom 5623  Rel wrel 5624  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ss 3915  df-br 5094  df-opab 5156  df-rel 5626  df-cnv 5627  df-co 5628  df-fun 6488
This theorem is referenced by:  funeq  6506  funopab4  6523  funres  6528  fun0  6551  funcnvcnv  6553  funin  6562  funres11  6563  foimacnv  6785  funelss  7985  funsssuppss  8126  fsuppss  9274  strle1  17071  strssd  17118  pjpm  21647  subgrfun  29261  setrecsss  49827
  Copyright terms: Public domain W3C validator