| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| funss | ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss 5722 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 2 | coss1 5795 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐴)) | |
| 3 | cnvss 5812 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 4 | coss2 5796 | . . . . . 6 ⊢ (◡𝐴 ⊆ ◡𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 6 | 2, 5 | sstrd 3945 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 7 | sstr2 3941 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵) → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) |
| 9 | 1, 8 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ))) |
| 10 | df-fun 6483 | . 2 ⊢ (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I )) | |
| 11 | df-fun 6483 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 I cid 5510 ◡ccnv 5615 ∘ ccom 5620 Rel wrel 5621 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-fun 6483 |
| This theorem is referenced by: funeq 6501 funopab4 6518 funres 6523 fun0 6546 funcnvcnv 6548 funin 6557 funres11 6558 foimacnv 6780 funelss 7979 funsssuppss 8120 fsuppss 9267 strle1 17066 strssd 17113 pjpm 21643 subgrfun 29257 setrecsss 49732 |
| Copyright terms: Public domain | W3C validator |