| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| funss | ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss 5747 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 2 | coss1 5822 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐴)) | |
| 3 | cnvss 5839 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 4 | coss2 5823 | . . . . . 6 ⊢ (◡𝐴 ⊆ ◡𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 6 | 2, 5 | sstrd 3960 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 7 | sstr2 3956 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵) → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) |
| 9 | 1, 8 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ))) |
| 10 | df-fun 6516 | . 2 ⊢ (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I )) | |
| 11 | df-fun 6516 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3917 I cid 5535 ◡ccnv 5640 ∘ ccom 5645 Rel wrel 5646 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funeq 6539 funopab4 6556 funres 6561 fun0 6584 funcnvcnv 6586 funin 6595 funres11 6596 foimacnv 6820 funelss 8029 funsssuppss 8172 fsuppss 9341 strle1 17135 strssd 17182 pjpm 21624 subgrfun 29215 setrecsss 49694 |
| Copyright terms: Public domain | W3C validator |