| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| funss | ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss 5744 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) | |
| 2 | coss1 5819 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐴)) | |
| 3 | cnvss 5836 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 4 | coss2 5820 | . . . . . 6 ⊢ (◡𝐴 ⊆ ◡𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 6 | 2, 5 | sstrd 3957 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵)) |
| 7 | sstr2 3953 | . . . 4 ⊢ ((𝐴 ∘ ◡𝐴) ⊆ (𝐵 ∘ ◡𝐵) → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∘ ◡𝐵) ⊆ I → (𝐴 ∘ ◡𝐴) ⊆ I )) |
| 9 | 1, 8 | anim12d 609 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I ))) |
| 10 | df-fun 6513 | . 2 ⊢ (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵 ∘ ◡𝐵) ⊆ I )) | |
| 11 | df-fun 6513 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Fun 𝐵 → Fun 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3914 I cid 5532 ◡ccnv 5637 ∘ ccom 5642 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funeq 6536 funopab4 6553 funres 6558 fun0 6581 funcnvcnv 6583 funin 6592 funres11 6593 foimacnv 6817 funelss 8026 funsssuppss 8169 fsuppss 9334 strle1 17128 strssd 17175 pjpm 21617 subgrfun 29208 setrecsss 49690 |
| Copyright terms: Public domain | W3C validator |