MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funss Structured version   Visualization version   GIF version

Theorem funss 6437
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 5682 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 5753 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 5770 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 5754 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3927 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3924 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 17 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 608 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 6420 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 6420 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 295 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3883   I cid 5479  ccnv 5579  ccom 5584  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  funeq  6438  funopab4  6455  funres  6460  fun0  6483  funcnvcnv  6485  funin  6494  funres11  6495  foimacnv  6717  funelss  7861  funsssuppss  7977  strle1  16787  strssd  16835  pjpm  20825  subgrfun  27551  setrecsss  46292
  Copyright terms: Public domain W3C validator