| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres11 | Structured version Visualization version GIF version | ||
| Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
| Ref | Expression |
|---|---|
| funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5972 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | cnvss 5836 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 3 | funss 6535 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
| 4 | 1, 2, 3 | mp2b 10 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 ◡ccnv 5637 ↾ cres 5640 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-res 5650 df-fun 6513 |
| This theorem is referenced by: f1ssres 6763 resdif 6821 f1ssf1 6832 resf1extb 7910 ssdomg 8971 sbthlem8 9058 spthispth 29654 |
| Copyright terms: Public domain | W3C validator |