MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funres11 Structured version   Visualization version   GIF version

Theorem funres11 6577
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 5961 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 5826 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 6519 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 10 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3911  ccnv 5630  cres 5633  Fun wfun 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-in 3918  df-ss 3928  df-br 5103  df-opab 5165  df-rel 5638  df-cnv 5639  df-co 5640  df-res 5643  df-fun 6501
This theorem is referenced by:  f1ssres  6745  resdif  6803  f1ssf1  6814  resf1extb  7890  ssdomg  8948  sbthlem8  9035  spthispth  29627
  Copyright terms: Public domain W3C validator