![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funres11 | Structured version Visualization version GIF version |
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6031 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | cnvss 5897 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
3 | funss 6597 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 ◡ccnv 5699 ↾ cres 5702 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 df-fun 6575 |
This theorem is referenced by: f1ssres 6824 resdif 6883 f1ssf1 6894 ssdomg 9060 sbthlem8 9156 spthispth 29762 |
Copyright terms: Public domain | W3C validator |