![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funres11 | Structured version Visualization version GIF version |
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6022 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | cnvss 5886 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
3 | funss 6587 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3963 ◡ccnv 5688 ↾ cres 5691 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-res 5701 df-fun 6565 |
This theorem is referenced by: f1ssres 6812 resdif 6870 f1ssf1 6881 ssdomg 9039 sbthlem8 9129 spthispth 29759 |
Copyright terms: Public domain | W3C validator |