MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funres11 Structured version   Visualization version   GIF version

Theorem funres11 6645
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 6022 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 5886 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 6587 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 10 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3963  ccnv 5688  cres 5691  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-in 3970  df-ss 3980  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-res 5701  df-fun 6565
This theorem is referenced by:  f1ssres  6812  resdif  6870  f1ssf1  6881  ssdomg  9039  sbthlem8  9129  spthispth  29759
  Copyright terms: Public domain W3C validator