| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funres11 | Structured version Visualization version GIF version | ||
| Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
| Ref | Expression |
|---|---|
| funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5957 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
| 2 | cnvss 5818 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
| 3 | funss 6508 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
| 4 | 1, 2, 3 | mp2b 10 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ◡ccnv 5620 ↾ cres 5623 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-res 5633 df-fun 6491 |
| This theorem is referenced by: f1ssres 6734 resdif 6792 f1ssf1 6803 f1oi 6809 resf1extb 7873 ssdomg 8933 sbthlem8 9018 spthispth 29723 |
| Copyright terms: Public domain | W3C validator |