Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funres11 | Structured version Visualization version GIF version |
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.) |
Ref | Expression |
---|---|
funres11 | ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5905 | . 2 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
2 | cnvss 5770 | . 2 ⊢ ((𝐹 ↾ 𝐴) ⊆ 𝐹 → ◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹) | |
3 | funss 6437 | . 2 ⊢ (◡(𝐹 ↾ 𝐴) ⊆ ◡𝐹 → (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴))) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ (Fun ◡𝐹 → Fun ◡(𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ◡ccnv 5579 ↾ cres 5582 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-res 5592 df-fun 6420 |
This theorem is referenced by: f1ssres 6662 resdif 6720 f1ssf1 6731 ssdomg 8741 sbthlem8 8830 spthispth 27995 |
Copyright terms: Public domain | W3C validator |