Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cnv Structured version   Visualization version   GIF version

Definition df-cnv 5365
 Description: Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if 𝐴 ∈ V and 𝐵 ∈ V then (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴), as proven in brcnv 5552 (see df-br 4889 and df-rel 5364 for more on relations). For example, ◡{⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩} (ex-cnv 27886). We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. Many authors use the postfix superscript "minus one". The term "converse" is Quine's terminology; some authors call it "inverse", especially when the argument is a function. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-cnv 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-cnv
StepHypRef Expression
1 cA . . 3 class 𝐴
21ccnv 5356 . 2 class 𝐴
3 vy . . . . 5 setvar 𝑦
43cv 1600 . . . 4 class 𝑦
5 vx . . . . 5 setvar 𝑥
65cv 1600 . . . 4 class 𝑥
74, 6, 1wbr 4888 . . 3 wff 𝑦𝐴𝑥
87, 5, 3copab 4950 . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
92, 8wceq 1601 1 wff 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
 Colors of variables: wff setvar class This definition is referenced by:  cnvss  5542  elcnv  5546  nfcnv  5548  brcnvg  5549  csbcnv  5553  csbcnvgALT  5554  cnvco  5555  relcnv  5759  cnv0  5792  cnvi  5793  cnvun  5794  cnvcnv3  5838
 Copyright terms: Public domain W3C validator