MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabbOLD Structured version   Visualization version   GIF version

Theorem eqabbOLD 2874
Description: Obsolete version of eqabb 2873 as of 12-Feb-2025. (Contributed by NM, 26-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eqabbOLD (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem eqabbOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-5 1913 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
2 hbab1 2718 . . 3 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
31, 2cleqh 2863 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2713 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 337 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1821 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 274 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539   = wceq 1541  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator