MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2wOLD Structured version   Visualization version   GIF version

Theorem nfra2wOLD 3155
Description: Obsolete version of nfra2w 3154 as of 31-Oct-2024. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by Gino Giotto, 24-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfra2wOLD 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2wOLD
StepHypRef Expression
1 df-ral 3069 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 df-ral 3069 . . . . 5 (∀𝑦𝐵 𝜑 ↔ ∀𝑦(𝑦𝐵𝜑))
32imbi2i 336 . . . 4 ((𝑥𝐴 → ∀𝑦𝐵 𝜑) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
43albii 1822 . . 3 (∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
51, 4bitri 274 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
6 nfa1 2148 . . 3 𝑦𝑦𝑥(𝑥𝐴 → (𝑦𝐵𝜑))
7 alcom 2156 . . . . 5 (∀𝑦𝑥(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ ∀𝑥𝑦(𝑥𝐴 → (𝑦𝐵𝜑)))
8 19.21v 1942 . . . . . 6 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
98albii 1822 . . . . 5 (∀𝑥𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
107, 9bitri 274 . . . 4 (∀𝑦𝑥(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
1110nfbii 1854 . . 3 (Ⅎ𝑦𝑦𝑥(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ Ⅎ𝑦𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
126, 11mpbi 229 . 2 𝑦𝑥(𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑))
135, 12nfxfr 1855 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1786  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-10 2137  ax-11 2154
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator