HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddid2i Structured version   Visualization version   GIF version

Theorem hvaddid2i 29391
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
hvaddid2.1 𝐴 ∈ ℋ
Assertion
Ref Expression
hvaddid2i (0 + 𝐴) = 𝐴

Proof of Theorem hvaddid2i
StepHypRef Expression
1 hvaddid2.1 . 2 𝐴 ∈ ℋ
2 hvaddid2 29385 . 2 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
31, 2ax-mp 5 1 (0 + 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  chba 29281   + cva 29282  0c0v 29286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709  ax-hvcom 29363  ax-hv0cl 29365  ax-hvaddid 29366
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730
This theorem is referenced by:  hvsubeq0i  29425  hvaddcani  29427  hsn0elch  29610  hhssnv  29626  shscli  29679
  Copyright terms: Public domain W3C validator