HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddid2i Structured version   Visualization version   GIF version

Theorem hvaddid2i 28441
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
hvaddid2.1 𝐴 ∈ ℋ
Assertion
Ref Expression
hvaddid2i (0 + 𝐴) = 𝐴

Proof of Theorem hvaddid2i
StepHypRef Expression
1 hvaddid2.1 . 2 𝐴 ∈ ℋ
2 hvaddid2 28435 . 2 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
31, 2ax-mp 5 1 (0 + 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  (class class class)co 6905  chba 28331   + cva 28332  0c0v 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-ext 2803  ax-hvcom 28413  ax-hv0cl 28415  ax-hvaddid 28416
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881  df-cleq 2818
This theorem is referenced by:  hvsubeq0i  28475  hvaddcani  28477  hsn0elch  28660  hhssnv  28676  shscli  28731
  Copyright terms: Public domain W3C validator