Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddid2i | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
hvaddid2i | ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddid2.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddid2 29286 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℋchba 29182 +ℎ cva 29183 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 ax-hvcom 29264 ax-hv0cl 29266 ax-hvaddid 29267 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: hvsubeq0i 29326 hvaddcani 29328 hsn0elch 29511 hhssnv 29527 shscli 29580 |
Copyright terms: Public domain | W3C validator |