![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddid2i | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
hvaddid2i | ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddid2.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddid2 28435 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 (class class class)co 6905 ℋchba 28331 +ℎ cva 28332 0ℎc0v 28336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-ext 2803 ax-hvcom 28413 ax-hv0cl 28415 ax-hvaddid 28416 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-cleq 2818 |
This theorem is referenced by: hvsubeq0i 28475 hvaddcani 28477 hsn0elch 28660 hhssnv 28676 shscli 28731 |
Copyright terms: Public domain | W3C validator |