Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version |
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29344 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | snssi 4746 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
4 | 1 | elexi 3449 | . . . . 5 ⊢ 0ℎ ∈ V |
5 | 4 | snid 4602 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
7 | velsn 4582 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
8 | velsn 4582 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
9 | oveq12 7277 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
10 | 1 | hvaddid2i 29370 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
11 | 9, 10 | eqtrdi 2795 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
12 | ovex 7301 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
13 | 12 | elsn 4581 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
14 | 11, 13 | sylibr 233 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
15 | 7, 8, 14 | syl2anb 597 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
16 | 15 | rgen2 3128 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
17 | oveq2 7276 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
18 | hvmul0 29365 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
19 | 17, 18 | sylan9eqr 2801 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
20 | ovex 7301 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
21 | 20 | elsn 4581 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
22 | 19, 21 | sylibr 233 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
23 | 8, 22 | sylan2b 593 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
24 | 23 | rgen2 3128 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
25 | 16, 24 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
26 | issh2 29550 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
27 | 6, 25, 26 | mpbir2an 707 | . 2 ⊢ {0ℎ} ∈ Sℋ |
28 | 4 | fconst2 7074 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
29 | hlim0 29576 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
30 | breq1 5081 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
31 | 29, 30 | mpbiri 257 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
32 | 28, 31 | sylbi 216 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
33 | hlimuni 29579 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
34 | 33 | eleq1d 2824 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
35 | 32, 34 | sylan 579 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
36 | 5, 35 | mpbii 232 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
37 | 36 | gen2 1802 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
38 | isch2 29564 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
39 | 27, 37, 38 | mpbir2an 707 | 1 ⊢ {0ℎ} ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 {csn 4566 class class class wbr 5078 × cxp 5586 ⟶wf 6426 (class class class)co 7268 ℂcc 10853 ℕcn 11956 ℋchba 29260 +ℎ cva 29261 ·ℎ csm 29262 0ℎc0v 29265 ⇝𝑣 chli 29268 Sℋ csh 29269 Cℋ cch 29270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 ax-hilex 29340 ax-hfvadd 29341 ax-hvcom 29342 ax-hvass 29343 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvdistr1 29349 ax-hvdistr2 29350 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his2 29424 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-icc 13068 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-top 22024 df-topon 22041 df-bases 22077 df-lm 22361 df-haus 22447 df-grpo 28834 df-gid 28835 df-ginv 28836 df-gdiv 28837 df-ablo 28886 df-vc 28900 df-nv 28933 df-va 28936 df-ba 28937 df-sm 28938 df-0v 28939 df-vs 28940 df-nmcv 28941 df-ims 28942 df-hnorm 29309 df-hvsub 29312 df-hlim 29313 df-sh 29548 df-ch 29562 |
This theorem is referenced by: h0elch 29596 h1de2ctlem 29896 |
Copyright terms: Public domain | W3C validator |