Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version |
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28951 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | snssi 4706 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
4 | 1 | elexi 3419 | . . . . 5 ⊢ 0ℎ ∈ V |
5 | 4 | snid 4562 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
6 | 3, 5 | pm3.2i 474 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
7 | velsn 4542 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
8 | velsn 4542 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
9 | oveq12 7192 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
10 | 1 | hvaddid2i 28977 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
11 | 9, 10 | eqtrdi 2790 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
12 | ovex 7216 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
13 | 12 | elsn 4541 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
14 | 11, 13 | sylibr 237 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
15 | 7, 8, 14 | syl2anb 601 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
16 | 15 | rgen2 3116 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
17 | oveq2 7191 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
18 | hvmul0 28972 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
19 | 17, 18 | sylan9eqr 2796 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
20 | ovex 7216 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
21 | 20 | elsn 4541 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
22 | 19, 21 | sylibr 237 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
23 | 8, 22 | sylan2b 597 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
24 | 23 | rgen2 3116 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
25 | 16, 24 | pm3.2i 474 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
26 | issh2 29157 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
27 | 6, 25, 26 | mpbir2an 711 | . 2 ⊢ {0ℎ} ∈ Sℋ |
28 | 4 | fconst2 6990 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
29 | hlim0 29183 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
30 | breq1 5043 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
31 | 29, 30 | mpbiri 261 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
32 | 28, 31 | sylbi 220 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
33 | hlimuni 29186 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
34 | 33 | eleq1d 2818 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
35 | 32, 34 | sylan 583 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
36 | 5, 35 | mpbii 236 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
37 | 36 | gen2 1803 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
38 | isch2 29171 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
39 | 27, 37, 38 | mpbir2an 711 | 1 ⊢ {0ℎ} ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∀wral 3054 ⊆ wss 3853 {csn 4526 class class class wbr 5040 × cxp 5533 ⟶wf 6346 (class class class)co 7183 ℂcc 10626 ℕcn 11729 ℋchba 28867 +ℎ cva 28868 ·ℎ csm 28869 0ℎc0v 28872 ⇝𝑣 chli 28875 Sℋ csh 28876 Cℋ cch 28877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 ax-pre-sup 10706 ax-addf 10707 ax-mulf 10708 ax-hilex 28947 ax-hfvadd 28948 ax-hvcom 28949 ax-hvass 28950 ax-hv0cl 28951 ax-hvaddid 28952 ax-hfvmul 28953 ax-hvmulid 28954 ax-hvmulass 28955 ax-hvdistr1 28956 ax-hvdistr2 28957 ax-hvmul0 28958 ax-hfi 29027 ax-his1 29030 ax-his2 29031 ax-his3 29032 ax-his4 29033 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-er 8333 df-map 8452 df-pm 8453 df-en 8569 df-dom 8570 df-sdom 8571 df-sup 8992 df-inf 8993 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-div 11389 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-n0 11990 df-z 12076 df-uz 12338 df-q 12444 df-rp 12486 df-xneg 12603 df-xadd 12604 df-xmul 12605 df-icc 12841 df-seq 13474 df-exp 13535 df-cj 14561 df-re 14562 df-im 14563 df-sqrt 14697 df-abs 14698 df-topgen 16833 df-psmet 20222 df-xmet 20223 df-met 20224 df-bl 20225 df-mopn 20226 df-top 21658 df-topon 21675 df-bases 21710 df-lm 21993 df-haus 22079 df-grpo 28441 df-gid 28442 df-ginv 28443 df-gdiv 28444 df-ablo 28493 df-vc 28507 df-nv 28540 df-va 28543 df-ba 28544 df-sm 28545 df-0v 28546 df-vs 28547 df-nmcv 28548 df-ims 28549 df-hnorm 28916 df-hvsub 28919 df-hlim 28920 df-sh 29155 df-ch 29169 |
This theorem is referenced by: h0elch 29203 h1de2ctlem 29503 |
Copyright terms: Public domain | W3C validator |