HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Structured version   Visualization version   GIF version

Theorem hsn0elch 29659
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch {0} ∈ C

Proof of Theorem hsn0elch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 29414 . . . . 5 0 ∈ ℋ
2 snssi 4747 . . . . 5 (0 ∈ ℋ → {0} ⊆ ℋ)
31, 2ax-mp 5 . . . 4 {0} ⊆ ℋ
41elexi 3456 . . . . 5 0 ∈ V
54snid 4601 . . . 4 0 ∈ {0}
63, 5pm3.2i 472 . . 3 ({0} ⊆ ℋ ∧ 0 ∈ {0})
7 velsn 4581 . . . . . 6 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8 velsn 4581 . . . . . 6 (𝑦 ∈ {0} ↔ 𝑦 = 0)
9 oveq12 7316 . . . . . . . 8 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = (0 + 0))
101hvaddid2i 29440 . . . . . . . 8 (0 + 0) = 0
119, 10eqtrdi 2792 . . . . . . 7 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = 0)
12 ovex 7340 . . . . . . . 8 (𝑥 + 𝑦) ∈ V
1312elsn 4580 . . . . . . 7 ((𝑥 + 𝑦) ∈ {0} ↔ (𝑥 + 𝑦) = 0)
1411, 13sylibr 233 . . . . . 6 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) ∈ {0})
157, 8, 14syl2anb 599 . . . . 5 ((𝑥 ∈ {0} ∧ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ {0})
1615rgen2 3191 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0}
17 oveq2 7315 . . . . . . . 8 (𝑦 = 0 → (𝑥 · 𝑦) = (𝑥 · 0))
18 hvmul0 29435 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1917, 18sylan9eqr 2798 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
20 ovex 7340 . . . . . . . 8 (𝑥 · 𝑦) ∈ V
2120elsn 4580 . . . . . . 7 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
2219, 21sylibr 233 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) ∈ {0})
238, 22sylan2b 595 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0}) → (𝑥 · 𝑦) ∈ {0})
2423rgen2 3191 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0}
2516, 24pm3.2i 472 . . 3 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})
26 issh2 29620 . . 3 ({0} ∈ S ↔ (({0} ⊆ ℋ ∧ 0 ∈ {0}) ∧ (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})))
276, 25, 26mpbir2an 709 . 2 {0} ∈ S
284fconst2 7112 . . . . . 6 (𝑓:ℕ⟶{0} ↔ 𝑓 = (ℕ × {0}))
29 hlim0 29646 . . . . . . 7 (ℕ × {0}) ⇝𝑣 0
30 breq1 5084 . . . . . . 7 (𝑓 = (ℕ × {0}) → (𝑓𝑣 0 ↔ (ℕ × {0}) ⇝𝑣 0))
3129, 30mpbiri 258 . . . . . 6 (𝑓 = (ℕ × {0}) → 𝑓𝑣 0)
3228, 31sylbi 216 . . . . 5 (𝑓:ℕ⟶{0} → 𝑓𝑣 0)
33 hlimuni 29649 . . . . . 6 ((𝑓𝑣 0𝑓𝑣 𝑥) → 0 = 𝑥)
3433eleq1d 2821 . . . . 5 ((𝑓𝑣 0𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
3532, 34sylan 581 . . . 4 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
365, 35mpbii 232 . . 3 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
3736gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
38 isch2 29634 . 2 ({0} ∈ C ↔ ({0} ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})))
3927, 37, 38mpbir2an 709 1 {0} ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537   = wceq 1539  wcel 2104  wral 3062  wss 3892  {csn 4565   class class class wbr 5081   × cxp 5598  wf 6454  (class class class)co 7307  cc 10919  cn 12023  chba 29330   + cva 29331   · csm 29332  0c0v 29335  𝑣 chli 29338   S csh 29339   C cch 29340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999  ax-addf 11000  ax-mulf 11001  ax-hilex 29410  ax-hfvadd 29411  ax-hvcom 29412  ax-hvass 29413  ax-hv0cl 29414  ax-hvaddid 29415  ax-hfvmul 29416  ax-hvmulid 29417  ax-hvmulass 29418  ax-hvdistr1 29419  ax-hvdistr2 29420  ax-hvmul0 29421  ax-hfi 29490  ax-his1 29493  ax-his2 29494  ax-his3 29495  ax-his4 29496
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-inf 9250  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-n0 12284  df-z 12370  df-uz 12633  df-q 12739  df-rp 12781  df-xneg 12898  df-xadd 12899  df-xmul 12900  df-icc 13136  df-seq 13772  df-exp 13833  df-cj 14859  df-re 14860  df-im 14861  df-sqrt 14995  df-abs 14996  df-topgen 17203  df-psmet 20638  df-xmet 20639  df-met 20640  df-bl 20641  df-mopn 20642  df-top 22092  df-topon 22109  df-bases 22145  df-lm 22429  df-haus 22515  df-grpo 28904  df-gid 28905  df-ginv 28906  df-gdiv 28907  df-ablo 28956  df-vc 28970  df-nv 29003  df-va 29006  df-ba 29007  df-sm 29008  df-0v 29009  df-vs 29010  df-nmcv 29011  df-ims 29012  df-hnorm 29379  df-hvsub 29382  df-hlim 29383  df-sh 29618  df-ch 29632
This theorem is referenced by:  h0elch  29666  h1de2ctlem  29966
  Copyright terms: Public domain W3C validator