| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30950 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
| 2 | snssi 4788 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
| 4 | 1 | elexi 3486 | . . . . 5 ⊢ 0ℎ ∈ V |
| 5 | 4 | snid 4642 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
| 7 | velsn 4622 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
| 8 | velsn 4622 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
| 9 | oveq12 7422 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
| 10 | 1 | hvaddlidi 30976 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
| 11 | 9, 10 | eqtrdi 2785 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
| 12 | ovex 7446 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
| 13 | 12 | elsn 4621 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
| 14 | 11, 13 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 15 | 7, 8, 14 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 16 | 15 | rgen2 3186 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
| 17 | oveq2 7421 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
| 18 | hvmul0 30971 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
| 19 | 17, 18 | sylan9eqr 2791 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 20 | ovex 7446 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
| 21 | 20 | elsn 4621 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 22 | 19, 21 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 23 | 8, 22 | sylan2b 594 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 24 | 23 | rgen2 3186 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
| 25 | 16, 24 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 26 | issh2 31156 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
| 27 | 6, 25, 26 | mpbir2an 711 | . 2 ⊢ {0ℎ} ∈ Sℋ |
| 28 | 4 | fconst2 7207 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
| 29 | hlim0 31182 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
| 30 | breq1 5126 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
| 31 | 29, 30 | mpbiri 258 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
| 32 | 28, 31 | sylbi 217 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
| 33 | hlimuni 31185 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
| 34 | 33 | eleq1d 2818 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 35 | 32, 34 | sylan 580 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 36 | 5, 35 | mpbii 233 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 37 | 36 | gen2 1795 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 38 | isch2 31170 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
| 39 | 27, 37, 38 | mpbir2an 711 | 1 ⊢ {0ℎ} ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 {csn 4606 class class class wbr 5123 × cxp 5663 ⟶wf 6537 (class class class)co 7413 ℂcc 11135 ℕcn 12248 ℋchba 30866 +ℎ cva 30867 ·ℎ csm 30868 0ℎc0v 30871 ⇝𝑣 chli 30874 Sℋ csh 30875 Cℋ cch 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 ax-hilex 30946 ax-hfvadd 30947 ax-hvcom 30948 ax-hvass 30949 ax-hv0cl 30950 ax-hvaddid 30951 ax-hfvmul 30952 ax-hvmulid 30953 ax-hvmulass 30954 ax-hvdistr1 30955 ax-hvdistr2 30956 ax-hvmul0 30957 ax-hfi 31026 ax-his1 31029 ax-his2 31030 ax-his3 31031 ax-his4 31032 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-icc 13376 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-topgen 17459 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-bases 22900 df-lm 23183 df-haus 23269 df-grpo 30440 df-gid 30441 df-ginv 30442 df-gdiv 30443 df-ablo 30492 df-vc 30506 df-nv 30539 df-va 30542 df-ba 30543 df-sm 30544 df-0v 30545 df-vs 30546 df-nmcv 30547 df-ims 30548 df-hnorm 30915 df-hvsub 30918 df-hlim 30919 df-sh 31154 df-ch 31168 |
| This theorem is referenced by: h0elch 31202 h1de2ctlem 31502 |
| Copyright terms: Public domain | W3C validator |