HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Structured version   Visualization version   GIF version

Theorem hsn0elch 29589
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch {0} ∈ C

Proof of Theorem hsn0elch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 29344 . . . . 5 0 ∈ ℋ
2 snssi 4746 . . . . 5 (0 ∈ ℋ → {0} ⊆ ℋ)
31, 2ax-mp 5 . . . 4 {0} ⊆ ℋ
41elexi 3449 . . . . 5 0 ∈ V
54snid 4602 . . . 4 0 ∈ {0}
63, 5pm3.2i 470 . . 3 ({0} ⊆ ℋ ∧ 0 ∈ {0})
7 velsn 4582 . . . . . 6 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8 velsn 4582 . . . . . 6 (𝑦 ∈ {0} ↔ 𝑦 = 0)
9 oveq12 7277 . . . . . . . 8 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = (0 + 0))
101hvaddid2i 29370 . . . . . . . 8 (0 + 0) = 0
119, 10eqtrdi 2795 . . . . . . 7 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = 0)
12 ovex 7301 . . . . . . . 8 (𝑥 + 𝑦) ∈ V
1312elsn 4581 . . . . . . 7 ((𝑥 + 𝑦) ∈ {0} ↔ (𝑥 + 𝑦) = 0)
1411, 13sylibr 233 . . . . . 6 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) ∈ {0})
157, 8, 14syl2anb 597 . . . . 5 ((𝑥 ∈ {0} ∧ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ {0})
1615rgen2 3128 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0}
17 oveq2 7276 . . . . . . . 8 (𝑦 = 0 → (𝑥 · 𝑦) = (𝑥 · 0))
18 hvmul0 29365 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1917, 18sylan9eqr 2801 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
20 ovex 7301 . . . . . . . 8 (𝑥 · 𝑦) ∈ V
2120elsn 4581 . . . . . . 7 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
2219, 21sylibr 233 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) ∈ {0})
238, 22sylan2b 593 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0}) → (𝑥 · 𝑦) ∈ {0})
2423rgen2 3128 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0}
2516, 24pm3.2i 470 . . 3 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})
26 issh2 29550 . . 3 ({0} ∈ S ↔ (({0} ⊆ ℋ ∧ 0 ∈ {0}) ∧ (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})))
276, 25, 26mpbir2an 707 . 2 {0} ∈ S
284fconst2 7074 . . . . . 6 (𝑓:ℕ⟶{0} ↔ 𝑓 = (ℕ × {0}))
29 hlim0 29576 . . . . . . 7 (ℕ × {0}) ⇝𝑣 0
30 breq1 5081 . . . . . . 7 (𝑓 = (ℕ × {0}) → (𝑓𝑣 0 ↔ (ℕ × {0}) ⇝𝑣 0))
3129, 30mpbiri 257 . . . . . 6 (𝑓 = (ℕ × {0}) → 𝑓𝑣 0)
3228, 31sylbi 216 . . . . 5 (𝑓:ℕ⟶{0} → 𝑓𝑣 0)
33 hlimuni 29579 . . . . . 6 ((𝑓𝑣 0𝑓𝑣 𝑥) → 0 = 𝑥)
3433eleq1d 2824 . . . . 5 ((𝑓𝑣 0𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
3532, 34sylan 579 . . . 4 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
365, 35mpbii 232 . . 3 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
3736gen2 1802 . 2 𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
38 isch2 29564 . 2 ({0} ∈ C ↔ ({0} ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})))
3927, 37, 38mpbir2an 707 1 {0} ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539   = wceq 1541  wcel 2109  wral 3065  wss 3891  {csn 4566   class class class wbr 5078   × cxp 5586  wf 6426  (class class class)co 7268  cc 10853  cn 11956  chba 29260   + cva 29261   · csm 29262  0c0v 29265  𝑣 chli 29268   S csh 29269   C cch 29270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935  ax-hilex 29340  ax-hfvadd 29341  ax-hvcom 29342  ax-hvass 29343  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvmulass 29348  ax-hvdistr1 29349  ax-hvdistr2 29350  ax-hvmul0 29351  ax-hfi 29420  ax-his1 29423  ax-his2 29424  ax-his3 29425  ax-his4 29426
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-icc 13068  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-bases 22077  df-lm 22361  df-haus 22447  df-grpo 28834  df-gid 28835  df-ginv 28836  df-gdiv 28837  df-ablo 28886  df-vc 28900  df-nv 28933  df-va 28936  df-ba 28937  df-sm 28938  df-0v 28939  df-vs 28940  df-nmcv 28941  df-ims 28942  df-hnorm 29309  df-hvsub 29312  df-hlim 29313  df-sh 29548  df-ch 29562
This theorem is referenced by:  h0elch  29596  h1de2ctlem  29896
  Copyright terms: Public domain W3C validator