| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30984 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
| 2 | snssi 4784 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
| 4 | 1 | elexi 3482 | . . . . 5 ⊢ 0ℎ ∈ V |
| 5 | 4 | snid 4638 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
| 7 | velsn 4617 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
| 8 | velsn 4617 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
| 9 | oveq12 7414 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
| 10 | 1 | hvaddlidi 31010 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
| 11 | 9, 10 | eqtrdi 2786 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
| 12 | ovex 7438 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
| 13 | 12 | elsn 4616 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
| 14 | 11, 13 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 15 | 7, 8, 14 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 16 | 15 | rgen2 3184 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
| 17 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
| 18 | hvmul0 31005 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
| 19 | 17, 18 | sylan9eqr 2792 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 20 | ovex 7438 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
| 21 | 20 | elsn 4616 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 22 | 19, 21 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 23 | 8, 22 | sylan2b 594 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 24 | 23 | rgen2 3184 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
| 25 | 16, 24 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 26 | issh2 31190 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
| 27 | 6, 25, 26 | mpbir2an 711 | . 2 ⊢ {0ℎ} ∈ Sℋ |
| 28 | 4 | fconst2 7197 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
| 29 | hlim0 31216 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
| 30 | breq1 5122 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
| 31 | 29, 30 | mpbiri 258 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
| 32 | 28, 31 | sylbi 217 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
| 33 | hlimuni 31219 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
| 34 | 33 | eleq1d 2819 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 35 | 32, 34 | sylan 580 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 36 | 5, 35 | mpbii 233 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 37 | 36 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 38 | isch2 31204 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
| 39 | 27, 37, 38 | mpbir2an 711 | 1 ⊢ {0ℎ} ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {csn 4601 class class class wbr 5119 × cxp 5652 ⟶wf 6527 (class class class)co 7405 ℂcc 11127 ℕcn 12240 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 0ℎc0v 30905 ⇝𝑣 chli 30908 Sℋ csh 30909 Cℋ cch 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-lm 23167 df-haus 23253 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-hnorm 30949 df-hvsub 30952 df-hlim 30953 df-sh 31188 df-ch 31202 |
| This theorem is referenced by: h0elch 31236 h1de2ctlem 31536 |
| Copyright terms: Public domain | W3C validator |