| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version | ||
| Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30939 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
| 2 | snssi 4775 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
| 4 | 1 | elexi 3473 | . . . . 5 ⊢ 0ℎ ∈ V |
| 5 | 4 | snid 4629 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
| 7 | velsn 4608 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
| 8 | velsn 4608 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
| 9 | oveq12 7399 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
| 10 | 1 | hvaddlidi 30965 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
| 11 | 9, 10 | eqtrdi 2781 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
| 12 | ovex 7423 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
| 13 | 12 | elsn 4607 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
| 14 | 11, 13 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 15 | 7, 8, 14 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
| 16 | 15 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
| 17 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
| 18 | hvmul0 30960 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
| 19 | 17, 18 | sylan9eqr 2787 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 20 | ovex 7423 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
| 21 | 20 | elsn 4607 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
| 22 | 19, 21 | sylibr 234 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 23 | 8, 22 | sylan2b 594 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 24 | 23 | rgen2 3178 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
| 25 | 16, 24 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
| 26 | issh2 31145 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
| 27 | 6, 25, 26 | mpbir2an 711 | . 2 ⊢ {0ℎ} ∈ Sℋ |
| 28 | 4 | fconst2 7182 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
| 29 | hlim0 31171 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
| 30 | breq1 5113 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
| 31 | 29, 30 | mpbiri 258 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
| 32 | 28, 31 | sylbi 217 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
| 33 | hlimuni 31174 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
| 34 | 33 | eleq1d 2814 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 35 | 32, 34 | sylan 580 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
| 36 | 5, 35 | mpbii 233 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 37 | 36 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
| 38 | isch2 31159 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
| 39 | 27, 37, 38 | mpbir2an 711 | 1 ⊢ {0ℎ} ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 {csn 4592 class class class wbr 5110 × cxp 5639 ⟶wf 6510 (class class class)co 7390 ℂcc 11073 ℕcn 12193 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 ⇝𝑣 chli 30863 Sℋ csh 30864 Cℋ cch 30865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-haus 23209 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-hnorm 30904 df-hvsub 30907 df-hlim 30908 df-sh 31143 df-ch 31157 |
| This theorem is referenced by: h0elch 31191 h1de2ctlem 31491 |
| Copyright terms: Public domain | W3C validator |