HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Structured version   Visualization version   GIF version

Theorem hsn0elch 31178
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch {0} ∈ C

Proof of Theorem hsn0elch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30933 . . . . 5 0 ∈ ℋ
2 snssi 4807 . . . . 5 (0 ∈ ℋ → {0} ⊆ ℋ)
31, 2ax-mp 5 . . . 4 {0} ⊆ ℋ
41elexi 3484 . . . . 5 0 ∈ V
54snid 4659 . . . 4 0 ∈ {0}
63, 5pm3.2i 469 . . 3 ({0} ⊆ ℋ ∧ 0 ∈ {0})
7 velsn 4639 . . . . . 6 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8 velsn 4639 . . . . . 6 (𝑦 ∈ {0} ↔ 𝑦 = 0)
9 oveq12 7425 . . . . . . . 8 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = (0 + 0))
101hvaddlidi 30959 . . . . . . . 8 (0 + 0) = 0
119, 10eqtrdi 2782 . . . . . . 7 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = 0)
12 ovex 7449 . . . . . . . 8 (𝑥 + 𝑦) ∈ V
1312elsn 4638 . . . . . . 7 ((𝑥 + 𝑦) ∈ {0} ↔ (𝑥 + 𝑦) = 0)
1411, 13sylibr 233 . . . . . 6 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) ∈ {0})
157, 8, 14syl2anb 596 . . . . 5 ((𝑥 ∈ {0} ∧ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ {0})
1615rgen2 3188 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0}
17 oveq2 7424 . . . . . . . 8 (𝑦 = 0 → (𝑥 · 𝑦) = (𝑥 · 0))
18 hvmul0 30954 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1917, 18sylan9eqr 2788 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
20 ovex 7449 . . . . . . . 8 (𝑥 · 𝑦) ∈ V
2120elsn 4638 . . . . . . 7 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
2219, 21sylibr 233 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) ∈ {0})
238, 22sylan2b 592 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0}) → (𝑥 · 𝑦) ∈ {0})
2423rgen2 3188 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0}
2516, 24pm3.2i 469 . . 3 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})
26 issh2 31139 . . 3 ({0} ∈ S ↔ (({0} ⊆ ℋ ∧ 0 ∈ {0}) ∧ (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})))
276, 25, 26mpbir2an 709 . 2 {0} ∈ S
284fconst2 7214 . . . . . 6 (𝑓:ℕ⟶{0} ↔ 𝑓 = (ℕ × {0}))
29 hlim0 31165 . . . . . . 7 (ℕ × {0}) ⇝𝑣 0
30 breq1 5148 . . . . . . 7 (𝑓 = (ℕ × {0}) → (𝑓𝑣 0 ↔ (ℕ × {0}) ⇝𝑣 0))
3129, 30mpbiri 257 . . . . . 6 (𝑓 = (ℕ × {0}) → 𝑓𝑣 0)
3228, 31sylbi 216 . . . . 5 (𝑓:ℕ⟶{0} → 𝑓𝑣 0)
33 hlimuni 31168 . . . . . 6 ((𝑓𝑣 0𝑓𝑣 𝑥) → 0 = 𝑥)
3433eleq1d 2811 . . . . 5 ((𝑓𝑣 0𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
3532, 34sylan 578 . . . 4 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
365, 35mpbii 232 . . 3 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
3736gen2 1791 . 2 𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
38 isch2 31153 . 2 ({0} ∈ C ↔ ({0} ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})))
3927, 37, 38mpbir2an 709 1 {0} ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wcel 2099  wral 3051  wss 3946  {csn 4623   class class class wbr 5145   × cxp 5672  wf 6542  (class class class)co 7416  cc 11147  cn 12258  chba 30849   + cva 30850   · csm 30851  0c0v 30854  𝑣 chli 30857   S csh 30858   C cch 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228  ax-mulf 11229  ax-hilex 30929  ax-hfvadd 30930  ax-hvcom 30931  ax-hvass 30932  ax-hv0cl 30933  ax-hvaddid 30934  ax-hfvmul 30935  ax-hvmulid 30936  ax-hvmulass 30937  ax-hvdistr1 30938  ax-hvdistr2 30939  ax-hvmul0 30940  ax-hfi 31009  ax-his1 31012  ax-his2 31013  ax-his3 31014  ax-his4 31015
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-map 8849  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-n0 12519  df-z 12605  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-icc 13379  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-topgen 17453  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-top 22884  df-topon 22901  df-bases 22937  df-lm 23221  df-haus 23307  df-grpo 30423  df-gid 30424  df-ginv 30425  df-gdiv 30426  df-ablo 30475  df-vc 30489  df-nv 30522  df-va 30525  df-ba 30526  df-sm 30527  df-0v 30528  df-vs 30529  df-nmcv 30530  df-ims 30531  df-hnorm 30898  df-hvsub 30901  df-hlim 30902  df-sh 31137  df-ch 31151
This theorem is referenced by:  h0elch  31185  h1de2ctlem  31485
  Copyright terms: Public domain W3C validator