HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Structured version   Visualization version   GIF version

Theorem hsn0elch 31229
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch {0} ∈ C

Proof of Theorem hsn0elch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 30984 . . . . 5 0 ∈ ℋ
2 snssi 4784 . . . . 5 (0 ∈ ℋ → {0} ⊆ ℋ)
31, 2ax-mp 5 . . . 4 {0} ⊆ ℋ
41elexi 3482 . . . . 5 0 ∈ V
54snid 4638 . . . 4 0 ∈ {0}
63, 5pm3.2i 470 . . 3 ({0} ⊆ ℋ ∧ 0 ∈ {0})
7 velsn 4617 . . . . . 6 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8 velsn 4617 . . . . . 6 (𝑦 ∈ {0} ↔ 𝑦 = 0)
9 oveq12 7414 . . . . . . . 8 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = (0 + 0))
101hvaddlidi 31010 . . . . . . . 8 (0 + 0) = 0
119, 10eqtrdi 2786 . . . . . . 7 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = 0)
12 ovex 7438 . . . . . . . 8 (𝑥 + 𝑦) ∈ V
1312elsn 4616 . . . . . . 7 ((𝑥 + 𝑦) ∈ {0} ↔ (𝑥 + 𝑦) = 0)
1411, 13sylibr 234 . . . . . 6 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) ∈ {0})
157, 8, 14syl2anb 598 . . . . 5 ((𝑥 ∈ {0} ∧ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ {0})
1615rgen2 3184 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0}
17 oveq2 7413 . . . . . . . 8 (𝑦 = 0 → (𝑥 · 𝑦) = (𝑥 · 0))
18 hvmul0 31005 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1917, 18sylan9eqr 2792 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
20 ovex 7438 . . . . . . . 8 (𝑥 · 𝑦) ∈ V
2120elsn 4616 . . . . . . 7 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
2219, 21sylibr 234 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) ∈ {0})
238, 22sylan2b 594 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0}) → (𝑥 · 𝑦) ∈ {0})
2423rgen2 3184 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0}
2516, 24pm3.2i 470 . . 3 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})
26 issh2 31190 . . 3 ({0} ∈ S ↔ (({0} ⊆ ℋ ∧ 0 ∈ {0}) ∧ (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})))
276, 25, 26mpbir2an 711 . 2 {0} ∈ S
284fconst2 7197 . . . . . 6 (𝑓:ℕ⟶{0} ↔ 𝑓 = (ℕ × {0}))
29 hlim0 31216 . . . . . . 7 (ℕ × {0}) ⇝𝑣 0
30 breq1 5122 . . . . . . 7 (𝑓 = (ℕ × {0}) → (𝑓𝑣 0 ↔ (ℕ × {0}) ⇝𝑣 0))
3129, 30mpbiri 258 . . . . . 6 (𝑓 = (ℕ × {0}) → 𝑓𝑣 0)
3228, 31sylbi 217 . . . . 5 (𝑓:ℕ⟶{0} → 𝑓𝑣 0)
33 hlimuni 31219 . . . . . 6 ((𝑓𝑣 0𝑓𝑣 𝑥) → 0 = 𝑥)
3433eleq1d 2819 . . . . 5 ((𝑓𝑣 0𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
3532, 34sylan 580 . . . 4 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
365, 35mpbii 233 . . 3 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
3736gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
38 isch2 31204 . 2 ({0} ∈ C ↔ ({0} ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})))
3927, 37, 38mpbir2an 711 1 {0} ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051  wss 3926  {csn 4601   class class class wbr 5119   × cxp 5652  wf 6527  (class class class)co 7405  cc 11127  cn 12240  chba 30900   + cva 30901   · csm 30902  0c0v 30905  𝑣 chli 30908   S csh 30909   C cch 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvmulass 30988  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-lm 23167  df-haus 23253  df-grpo 30474  df-gid 30475  df-ginv 30476  df-gdiv 30477  df-ablo 30526  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-vs 30580  df-nmcv 30581  df-ims 30582  df-hnorm 30949  df-hvsub 30952  df-hlim 30953  df-sh 31188  df-ch 31202
This theorem is referenced by:  h0elch  31236  h1de2ctlem  31536
  Copyright terms: Public domain W3C validator