HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hsn0elch Structured version   Visualization version   GIF version

Theorem hsn0elch 29025
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hsn0elch {0} ∈ C

Proof of Theorem hsn0elch
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 28780 . . . . 5 0 ∈ ℋ
2 snssi 4741 . . . . 5 (0 ∈ ℋ → {0} ⊆ ℋ)
31, 2ax-mp 5 . . . 4 {0} ⊆ ℋ
41elexi 3513 . . . . 5 0 ∈ V
54snid 4601 . . . 4 0 ∈ {0}
63, 5pm3.2i 473 . . 3 ({0} ⊆ ℋ ∧ 0 ∈ {0})
7 velsn 4583 . . . . . 6 (𝑥 ∈ {0} ↔ 𝑥 = 0)
8 velsn 4583 . . . . . 6 (𝑦 ∈ {0} ↔ 𝑦 = 0)
9 oveq12 7165 . . . . . . . 8 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = (0 + 0))
101hvaddid2i 28806 . . . . . . . 8 (0 + 0) = 0
119, 10syl6eq 2872 . . . . . . 7 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) = 0)
12 ovex 7189 . . . . . . . 8 (𝑥 + 𝑦) ∈ V
1312elsn 4582 . . . . . . 7 ((𝑥 + 𝑦) ∈ {0} ↔ (𝑥 + 𝑦) = 0)
1411, 13sylibr 236 . . . . . 6 ((𝑥 = 0𝑦 = 0) → (𝑥 + 𝑦) ∈ {0})
157, 8, 14syl2anb 599 . . . . 5 ((𝑥 ∈ {0} ∧ 𝑦 ∈ {0}) → (𝑥 + 𝑦) ∈ {0})
1615rgen2 3203 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0}
17 oveq2 7164 . . . . . . . 8 (𝑦 = 0 → (𝑥 · 𝑦) = (𝑥 · 0))
18 hvmul0 28801 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥 · 0) = 0)
1917, 18sylan9eqr 2878 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) = 0)
20 ovex 7189 . . . . . . . 8 (𝑥 · 𝑦) ∈ V
2120elsn 4582 . . . . . . 7 ((𝑥 · 𝑦) ∈ {0} ↔ (𝑥 · 𝑦) = 0)
2219, 21sylibr 236 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 = 0) → (𝑥 · 𝑦) ∈ {0})
238, 22sylan2b 595 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0}) → (𝑥 · 𝑦) ∈ {0})
2423rgen2 3203 . . . 4 𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0}
2516, 24pm3.2i 473 . . 3 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})
26 issh2 28986 . . 3 ({0} ∈ S ↔ (({0} ⊆ ℋ ∧ 0 ∈ {0}) ∧ (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (𝑥 + 𝑦) ∈ {0} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0} (𝑥 · 𝑦) ∈ {0})))
276, 25, 26mpbir2an 709 . 2 {0} ∈ S
284fconst2 6967 . . . . . 6 (𝑓:ℕ⟶{0} ↔ 𝑓 = (ℕ × {0}))
29 hlim0 29012 . . . . . . 7 (ℕ × {0}) ⇝𝑣 0
30 breq1 5069 . . . . . . 7 (𝑓 = (ℕ × {0}) → (𝑓𝑣 0 ↔ (ℕ × {0}) ⇝𝑣 0))
3129, 30mpbiri 260 . . . . . 6 (𝑓 = (ℕ × {0}) → 𝑓𝑣 0)
3228, 31sylbi 219 . . . . 5 (𝑓:ℕ⟶{0} → 𝑓𝑣 0)
33 hlimuni 29015 . . . . . 6 ((𝑓𝑣 0𝑓𝑣 𝑥) → 0 = 𝑥)
3433eleq1d 2897 . . . . 5 ((𝑓𝑣 0𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
3532, 34sylan 582 . . . 4 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → (0 ∈ {0} ↔ 𝑥 ∈ {0}))
365, 35mpbii 235 . . 3 ((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
3736gen2 1797 . 2 𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})
38 isch2 29000 . 2 ({0} ∈ C ↔ ({0} ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶{0} ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ {0})))
3927, 37, 38mpbir2an 709 1 {0} ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  wral 3138  wss 3936  {csn 4567   class class class wbr 5066   × cxp 5553  wf 6351  (class class class)co 7156  cc 10535  cn 11638  chba 28696   + cva 28697   · csm 28698  0c0v 28701  𝑣 chli 28704   S csh 28705   C cch 28706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617  ax-hilex 28776  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783  ax-hvmulass 28784  ax-hvdistr1 28785  ax-hvdistr2 28786  ax-hvmul0 28787  ax-hfi 28856  ax-his1 28859  ax-his2 28860  ax-his3 28861  ax-his4 28862
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-lm 21837  df-haus 21923  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377  df-ims 28378  df-hnorm 28745  df-hvsub 28748  df-hlim 28749  df-sh 28984  df-ch 28998
This theorem is referenced by:  h0elch  29032  h1de2ctlem  29332
  Copyright terms: Public domain W3C validator