![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddcani | Structured version Visualization version GIF version |
Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | โข ๐ด โ โ |
hvnegdi.2 | โข ๐ต โ โ |
hvaddcan.3 | โข ๐ถ โ โ |
Ref | Expression |
---|---|
hvaddcani | โข ((๐ด +โ ๐ต) = (๐ด +โ ๐ถ) โ ๐ต = ๐ถ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7368 | . . 3 โข ((๐ด +โ ๐ต) = (๐ด +โ ๐ถ) โ ((๐ด +โ ๐ต) +โ (-1 ยทโ ๐ด)) = ((๐ด +โ ๐ถ) +โ (-1 ยทโ ๐ด))) | |
2 | hvnegdi.1 | . . . . 5 โข ๐ด โ โ | |
3 | hvnegdi.2 | . . . . 5 โข ๐ต โ โ | |
4 | neg1cn 12275 | . . . . . 6 โข -1 โ โ | |
5 | 4, 2 | hvmulcli 30005 | . . . . 5 โข (-1 ยทโ ๐ด) โ โ |
6 | 2, 3, 5 | hvadd32i 30045 | . . . 4 โข ((๐ด +โ ๐ต) +โ (-1 ยทโ ๐ด)) = ((๐ด +โ (-1 ยทโ ๐ด)) +โ ๐ต) |
7 | 2 | hvnegidi 30021 | . . . . 5 โข (๐ด +โ (-1 ยทโ ๐ด)) = 0โ |
8 | 7 | oveq1i 7371 | . . . 4 โข ((๐ด +โ (-1 ยทโ ๐ด)) +โ ๐ต) = (0โ +โ ๐ต) |
9 | 3 | hvaddlidi 30020 | . . . 4 โข (0โ +โ ๐ต) = ๐ต |
10 | 6, 8, 9 | 3eqtri 2765 | . . 3 โข ((๐ด +โ ๐ต) +โ (-1 ยทโ ๐ด)) = ๐ต |
11 | hvaddcan.3 | . . . . 5 โข ๐ถ โ โ | |
12 | 2, 11, 5 | hvadd32i 30045 | . . . 4 โข ((๐ด +โ ๐ถ) +โ (-1 ยทโ ๐ด)) = ((๐ด +โ (-1 ยทโ ๐ด)) +โ ๐ถ) |
13 | 7 | oveq1i 7371 | . . . 4 โข ((๐ด +โ (-1 ยทโ ๐ด)) +โ ๐ถ) = (0โ +โ ๐ถ) |
14 | 11 | hvaddlidi 30020 | . . . 4 โข (0โ +โ ๐ถ) = ๐ถ |
15 | 12, 13, 14 | 3eqtri 2765 | . . 3 โข ((๐ด +โ ๐ถ) +โ (-1 ยทโ ๐ด)) = ๐ถ |
16 | 1, 10, 15 | 3eqtr3g 2796 | . 2 โข ((๐ด +โ ๐ต) = (๐ด +โ ๐ถ) โ ๐ต = ๐ถ) |
17 | oveq2 7369 | . 2 โข (๐ต = ๐ถ โ (๐ด +โ ๐ต) = (๐ด +โ ๐ถ)) | |
18 | 16, 17 | impbii 208 | 1 โข ((๐ด +โ ๐ต) = (๐ด +โ ๐ถ) โ ๐ต = ๐ถ) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 = wceq 1542 โ wcel 2107 (class class class)co 7361 1c1 11060 -cneg 11394 โchba 29910 +โ cva 29911 ยทโ csm 29912 0โc0v 29915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-hvcom 29992 ax-hvass 29993 ax-hv0cl 29994 ax-hvaddid 29995 ax-hfvmul 29996 ax-hvmulid 29997 ax-hvdistr2 30000 ax-hvmul0 30001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-ltxr 11202 df-sub 11395 df-neg 11396 df-hvsub 29962 |
This theorem is referenced by: hvsubaddi 30057 hvaddcan 30061 |
Copyright terms: Public domain | W3C validator |