HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcani Structured version   Visualization version   GIF version

Theorem hvaddcani 31085
Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
hvaddcan.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvaddcani ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)

Proof of Theorem hvaddcani
StepHypRef Expression
1 oveq1 7439 . . 3 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝐴 + 𝐵) + (-1 · 𝐴)) = ((𝐴 + 𝐶) + (-1 · 𝐴)))
2 hvnegdi.1 . . . . 5 𝐴 ∈ ℋ
3 hvnegdi.2 . . . . 5 𝐵 ∈ ℋ
4 neg1cn 12381 . . . . . 6 -1 ∈ ℂ
54, 2hvmulcli 31034 . . . . 5 (-1 · 𝐴) ∈ ℋ
62, 3, 5hvadd32i 31074 . . . 4 ((𝐴 + 𝐵) + (-1 · 𝐴)) = ((𝐴 + (-1 · 𝐴)) + 𝐵)
72hvnegidi 31050 . . . . 5 (𝐴 + (-1 · 𝐴)) = 0
87oveq1i 7442 . . . 4 ((𝐴 + (-1 · 𝐴)) + 𝐵) = (0 + 𝐵)
93hvaddlidi 31049 . . . 4 (0 + 𝐵) = 𝐵
106, 8, 93eqtri 2768 . . 3 ((𝐴 + 𝐵) + (-1 · 𝐴)) = 𝐵
11 hvaddcan.3 . . . . 5 𝐶 ∈ ℋ
122, 11, 5hvadd32i 31074 . . . 4 ((𝐴 + 𝐶) + (-1 · 𝐴)) = ((𝐴 + (-1 · 𝐴)) + 𝐶)
137oveq1i 7442 . . . 4 ((𝐴 + (-1 · 𝐴)) + 𝐶) = (0 + 𝐶)
1411hvaddlidi 31049 . . . 4 (0 + 𝐶) = 𝐶
1512, 13, 143eqtri 2768 . . 3 ((𝐴 + 𝐶) + (-1 · 𝐴)) = 𝐶
161, 10, 153eqtr3g 2799 . 2 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)
17 oveq2 7440 . 2 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
1816, 17impbii 209 1 ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  (class class class)co 7432  1c1 11157  -cneg 11494  chba 30939   + cva 30940   · csm 30941  0c0v 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-hvcom 31021  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvdistr2 31029  ax-hvmul0 31030
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-sub 11495  df-neg 11496  df-hvsub 30991
This theorem is referenced by:  hvsubaddi  31086  hvaddcan  31090
  Copyright terms: Public domain W3C validator