Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddid2 | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2 | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28938 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom 28936 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
4 | ax-hvaddid 28939 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
5 | 3, 4 | eqtr3d 2775 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 (class class class)co 7171 ℋchba 28854 +ℎ cva 28855 0ℎc0v 28859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-9 2123 ax-ext 2710 ax-hvcom 28936 ax-hv0cl 28938 ax-hvaddid 28939 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-cleq 2730 |
This theorem is referenced by: hv2neg 28963 hvaddid2i 28964 hvaddsub4 29013 hilablo 29095 hilid 29096 shunssi 29303 spanunsni 29514 5oalem2 29590 3oalem2 29598 |
Copyright terms: Public domain | W3C validator |