![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddid2 | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2 | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28385 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom 28383 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
3 | 1, 2 | mpan2 683 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
4 | ax-hvaddid 28386 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
5 | 3, 4 | eqtr3d 2835 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 (class class class)co 6878 ℋchba 28301 +ℎ cva 28302 0ℎc0v 28306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2777 ax-hvcom 28383 ax-hv0cl 28385 ax-hvaddid 28386 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2792 |
This theorem is referenced by: hv2neg 28410 hvaddid2i 28411 hvaddsub4 28460 hilablo 28542 hilid 28543 shunssi 28752 spanunsni 28963 5oalem2 29039 3oalem2 29047 |
Copyright terms: Public domain | W3C validator |