HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 30986
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30901 . . 3 class
31, 2wcel 2113 . 2 wff 𝐴 ∈ ℋ
4 c0v 30906 . . . 4 class 0
5 cva 30902 . . . 4 class +
61, 4, 5co 7352 . . 3 class (𝐴 + 0)
76, 1wceq 1541 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  31005  hvpncan  31021  hvsubeq0i  31045  hvsubcan2i  31046  hvsubaddi  31048  hvsub0  31058  hvaddsub4  31060  norm3difi  31129  shsel1  31303  shunssi  31350  omlsilem  31384  pjoc1i  31413  pjchi  31414  spansncvi  31634  5oalem1  31636  5oalem2  31637  3oalem2  31645  pjssmii  31663  hoaddridi  31768  lnop0  31948  lnopmul  31949  lnfn0i  32024  lnfnmuli  32026  pjclem4  32181  pj3si  32189  hst1h  32209  sumdmdlem  32400
  Copyright terms: Public domain W3C validator