![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 30210 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2106 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 30215 | . . . 4 class 0ℎ | |
5 | cva 30211 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7411 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1541 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddlid 30314 hvpncan 30330 hvsubeq0i 30354 hvsubcan2i 30355 hvsubaddi 30357 hvsub0 30367 hvaddsub4 30369 norm3difi 30438 shsel1 30612 shunssi 30659 omlsilem 30693 pjoc1i 30722 pjchi 30723 spansncvi 30943 5oalem1 30945 5oalem2 30946 3oalem2 30954 pjssmii 30972 hoaddridi 31077 lnop0 31257 lnopmul 31258 lnfn0i 31333 lnfnmuli 31335 pjclem4 31490 pj3si 31498 hst1h 31518 sumdmdlem 31709 |
Copyright terms: Public domain | W3C validator |