| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30846 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30851 | . . . 4 class 0ℎ | |
| 5 | cva 30847 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7403 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30950 hvpncan 30966 hvsubeq0i 30990 hvsubcan2i 30991 hvsubaddi 30993 hvsub0 31003 hvaddsub4 31005 norm3difi 31074 shsel1 31248 shunssi 31295 omlsilem 31329 pjoc1i 31358 pjchi 31359 spansncvi 31579 5oalem1 31581 5oalem2 31582 3oalem2 31590 pjssmii 31608 hoaddridi 31713 lnop0 31893 lnopmul 31894 lnfn0i 31969 lnfnmuli 31971 pjclem4 32126 pj3si 32134 hst1h 32154 sumdmdlem 32345 |
| Copyright terms: Public domain | W3C validator |