Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29289 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2106 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 29294 | . . . 4 class 0ℎ | |
5 | cva 29290 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7267 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1539 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddid2 29393 hvpncan 29409 hvsubeq0i 29433 hvsubcan2i 29434 hvsubaddi 29436 hvsub0 29446 hvaddsub4 29448 norm3difi 29517 shsel1 29691 shunssi 29738 omlsilem 29772 pjoc1i 29801 pjchi 29802 spansncvi 30022 5oalem1 30024 5oalem2 30025 3oalem2 30033 pjssmii 30051 hoaddid1i 30156 lnop0 30336 lnopmul 30337 lnfn0i 30412 lnfnmuli 30414 pjclem4 30569 pj3si 30577 hst1h 30597 sumdmdlem 30788 |
Copyright terms: Public domain | W3C validator |