| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30848 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30853 | . . . 4 class 0ℎ | |
| 5 | cva 30849 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7387 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30952 hvpncan 30968 hvsubeq0i 30992 hvsubcan2i 30993 hvsubaddi 30995 hvsub0 31005 hvaddsub4 31007 norm3difi 31076 shsel1 31250 shunssi 31297 omlsilem 31331 pjoc1i 31360 pjchi 31361 spansncvi 31581 5oalem1 31583 5oalem2 31584 3oalem2 31592 pjssmii 31610 hoaddridi 31715 lnop0 31895 lnopmul 31896 lnfn0i 31971 lnfnmuli 31973 pjclem4 32128 pj3si 32136 hst1h 32156 sumdmdlem 32347 |
| Copyright terms: Public domain | W3C validator |