![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 30440 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2105 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 30445 | . . . 4 class 0ℎ | |
5 | cva 30441 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7412 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddlid 30544 hvpncan 30560 hvsubeq0i 30584 hvsubcan2i 30585 hvsubaddi 30587 hvsub0 30597 hvaddsub4 30599 norm3difi 30668 shsel1 30842 shunssi 30889 omlsilem 30923 pjoc1i 30952 pjchi 30953 spansncvi 31173 5oalem1 31175 5oalem2 31176 3oalem2 31184 pjssmii 31202 hoaddridi 31307 lnop0 31487 lnopmul 31488 lnfn0i 31563 lnfnmuli 31565 pjclem4 31720 pj3si 31728 hst1h 31748 sumdmdlem 31939 |
Copyright terms: Public domain | W3C validator |