| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30855 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30860 | . . . 4 class 0ℎ | |
| 5 | cva 30856 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7390 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30959 hvpncan 30975 hvsubeq0i 30999 hvsubcan2i 31000 hvsubaddi 31002 hvsub0 31012 hvaddsub4 31014 norm3difi 31083 shsel1 31257 shunssi 31304 omlsilem 31338 pjoc1i 31367 pjchi 31368 spansncvi 31588 5oalem1 31590 5oalem2 31591 3oalem2 31599 pjssmii 31617 hoaddridi 31722 lnop0 31902 lnopmul 31903 lnfn0i 31978 lnfnmuli 31980 pjclem4 32135 pj3si 32143 hst1h 32163 sumdmdlem 32354 |
| Copyright terms: Public domain | W3C validator |