| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30894 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2111 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30899 | . . . 4 class 0ℎ | |
| 5 | cva 30895 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7346 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1541 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30998 hvpncan 31014 hvsubeq0i 31038 hvsubcan2i 31039 hvsubaddi 31041 hvsub0 31051 hvaddsub4 31053 norm3difi 31122 shsel1 31296 shunssi 31343 omlsilem 31377 pjoc1i 31406 pjchi 31407 spansncvi 31627 5oalem1 31629 5oalem2 31630 3oalem2 31638 pjssmii 31656 hoaddridi 31761 lnop0 31941 lnopmul 31942 lnfn0i 32017 lnfnmuli 32019 pjclem4 32174 pj3si 32182 hst1h 32202 sumdmdlem 32393 |
| Copyright terms: Public domain | W3C validator |