HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 30951
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30866 . . 3 class
31, 2wcel 2107 . 2 wff 𝐴 ∈ ℋ
4 c0v 30871 . . . 4 class 0
5 cva 30867 . . . 4 class +
61, 4, 5co 7413 . . 3 class (𝐴 + 0)
76, 1wceq 1539 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  30970  hvpncan  30986  hvsubeq0i  31010  hvsubcan2i  31011  hvsubaddi  31013  hvsub0  31023  hvaddsub4  31025  norm3difi  31094  shsel1  31268  shunssi  31315  omlsilem  31349  pjoc1i  31378  pjchi  31379  spansncvi  31599  5oalem1  31601  5oalem2  31602  3oalem2  31610  pjssmii  31628  hoaddridi  31733  lnop0  31913  lnopmul  31914  lnfn0i  31989  lnfnmuli  31991  pjclem4  32146  pj3si  32154  hst1h  32174  sumdmdlem  32365
  Copyright terms: Public domain W3C validator