![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 30947 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2105 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 30952 | . . . 4 class 0ℎ | |
5 | cva 30948 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7430 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1536 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddlid 31051 hvpncan 31067 hvsubeq0i 31091 hvsubcan2i 31092 hvsubaddi 31094 hvsub0 31104 hvaddsub4 31106 norm3difi 31175 shsel1 31349 shunssi 31396 omlsilem 31430 pjoc1i 31459 pjchi 31460 spansncvi 31680 5oalem1 31682 5oalem2 31683 3oalem2 31691 pjssmii 31709 hoaddridi 31814 lnop0 31994 lnopmul 31995 lnfn0i 32070 lnfnmuli 32072 pjclem4 32227 pj3si 32235 hst1h 32255 sumdmdlem 32446 |
Copyright terms: Public domain | W3C validator |