HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 30933
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30848 . . 3 class
31, 2wcel 2109 . 2 wff 𝐴 ∈ ℋ
4 c0v 30853 . . . 4 class 0
5 cva 30849 . . . 4 class +
61, 4, 5co 7387 . . 3 class (𝐴 + 0)
76, 1wceq 1540 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  30952  hvpncan  30968  hvsubeq0i  30992  hvsubcan2i  30993  hvsubaddi  30995  hvsub0  31005  hvaddsub4  31007  norm3difi  31076  shsel1  31250  shunssi  31297  omlsilem  31331  pjoc1i  31360  pjchi  31361  spansncvi  31581  5oalem1  31583  5oalem2  31584  3oalem2  31592  pjssmii  31610  hoaddridi  31715  lnop0  31895  lnopmul  31896  lnfn0i  31971  lnfnmuli  31973  pjclem4  32128  pj3si  32136  hst1h  32156  sumdmdlem  32347
  Copyright terms: Public domain W3C validator