HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 31036
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30951 . . 3 class
31, 2wcel 2108 . 2 wff 𝐴 ∈ ℋ
4 c0v 30956 . . . 4 class 0
5 cva 30952 . . . 4 class +
61, 4, 5co 7448 . . 3 class (𝐴 + 0)
76, 1wceq 1537 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  31055  hvpncan  31071  hvsubeq0i  31095  hvsubcan2i  31096  hvsubaddi  31098  hvsub0  31108  hvaddsub4  31110  norm3difi  31179  shsel1  31353  shunssi  31400  omlsilem  31434  pjoc1i  31463  pjchi  31464  spansncvi  31684  5oalem1  31686  5oalem2  31687  3oalem2  31695  pjssmii  31713  hoaddridi  31818  lnop0  31998  lnopmul  31999  lnfn0i  32074  lnfnmuli  32076  pjclem4  32231  pj3si  32239  hst1h  32259  sumdmdlem  32450
  Copyright terms: Public domain W3C validator