| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30901 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2113 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30906 | . . . 4 class 0ℎ | |
| 5 | cva 30902 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7352 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1541 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 31005 hvpncan 31021 hvsubeq0i 31045 hvsubcan2i 31046 hvsubaddi 31048 hvsub0 31058 hvaddsub4 31060 norm3difi 31129 shsel1 31303 shunssi 31350 omlsilem 31384 pjoc1i 31413 pjchi 31414 spansncvi 31634 5oalem1 31636 5oalem2 31637 3oalem2 31645 pjssmii 31663 hoaddridi 31768 lnop0 31948 lnopmul 31949 lnfn0i 32024 lnfnmuli 32026 pjclem4 32181 pj3si 32189 hst1h 32209 sumdmdlem 32400 |
| Copyright terms: Public domain | W3C validator |