Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29182 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 29187 | . . . 4 class 0ℎ | |
5 | cva 29183 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7255 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1539 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddid2 29286 hvpncan 29302 hvsubeq0i 29326 hvsubcan2i 29327 hvsubaddi 29329 hvsub0 29339 hvaddsub4 29341 norm3difi 29410 shsel1 29584 shunssi 29631 omlsilem 29665 pjoc1i 29694 pjchi 29695 spansncvi 29915 5oalem1 29917 5oalem2 29918 3oalem2 29926 pjssmii 29944 hoaddid1i 30049 lnop0 30229 lnopmul 30230 lnfn0i 30305 lnfnmuli 30307 pjclem4 30462 pj3si 30470 hst1h 30490 sumdmdlem 30681 |
Copyright terms: Public domain | W3C validator |