| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30866 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2107 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30871 | . . . 4 class 0ℎ | |
| 5 | cva 30867 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7413 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1539 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30970 hvpncan 30986 hvsubeq0i 31010 hvsubcan2i 31011 hvsubaddi 31013 hvsub0 31023 hvaddsub4 31025 norm3difi 31094 shsel1 31268 shunssi 31315 omlsilem 31349 pjoc1i 31378 pjchi 31379 spansncvi 31599 5oalem1 31601 5oalem2 31602 3oalem2 31610 pjssmii 31628 hoaddridi 31733 lnop0 31913 lnopmul 31914 lnfn0i 31989 lnfnmuli 31991 pjclem4 32146 pj3si 32154 hst1h 32174 sumdmdlem 32365 |
| Copyright terms: Public domain | W3C validator |