| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | chba 30881 | . . 3 class ℋ | |
| 3 | 1, 2 | wcel 2109 | . 2 wff 𝐴 ∈ ℋ |
| 4 | c0v 30886 | . . . 4 class 0ℎ | |
| 5 | cva 30882 | . . . 4 class +ℎ | |
| 6 | 1, 4, 5 | co 7353 | . . 3 class (𝐴 +ℎ 0ℎ) |
| 7 | 6, 1 | wceq 1540 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
| 8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvaddlid 30985 hvpncan 31001 hvsubeq0i 31025 hvsubcan2i 31026 hvsubaddi 31028 hvsub0 31038 hvaddsub4 31040 norm3difi 31109 shsel1 31283 shunssi 31330 omlsilem 31364 pjoc1i 31393 pjchi 31394 spansncvi 31614 5oalem1 31616 5oalem2 31617 3oalem2 31625 pjssmii 31643 hoaddridi 31748 lnop0 31928 lnopmul 31929 lnfn0i 32004 lnfnmuli 32006 pjclem4 32161 pj3si 32169 hst1h 32189 sumdmdlem 32380 |
| Copyright terms: Public domain | W3C validator |