Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 29290 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2107 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 29295 | . . . 4 class 0ℎ | |
5 | cva 29291 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7284 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1539 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddid2 29394 hvpncan 29410 hvsubeq0i 29434 hvsubcan2i 29435 hvsubaddi 29437 hvsub0 29447 hvaddsub4 29449 norm3difi 29518 shsel1 29692 shunssi 29739 omlsilem 29773 pjoc1i 29802 pjchi 29803 spansncvi 30023 5oalem1 30025 5oalem2 30026 3oalem2 30034 pjssmii 30052 hoaddid1i 30157 lnop0 30337 lnopmul 30338 lnfn0i 30413 lnfnmuli 30415 pjclem4 30570 pj3si 30578 hst1h 30598 sumdmdlem 30789 |
Copyright terms: Public domain | W3C validator |