HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 30940
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30855 . . 3 class
31, 2wcel 2109 . 2 wff 𝐴 ∈ ℋ
4 c0v 30860 . . . 4 class 0
5 cva 30856 . . . 4 class +
61, 4, 5co 7390 . . 3 class (𝐴 + 0)
76, 1wceq 1540 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  30959  hvpncan  30975  hvsubeq0i  30999  hvsubcan2i  31000  hvsubaddi  31002  hvsub0  31012  hvaddsub4  31014  norm3difi  31083  shsel1  31257  shunssi  31304  omlsilem  31338  pjoc1i  31367  pjchi  31368  spansncvi  31588  5oalem1  31590  5oalem2  31591  3oalem2  31599  pjssmii  31617  hoaddridi  31722  lnop0  31902  lnopmul  31903  lnfn0i  31978  lnfnmuli  31980  pjclem4  32135  pj3si  32143  hst1h  32163  sumdmdlem  32354
  Copyright terms: Public domain W3C validator