HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvaddid Structured version   Visualization version   GIF version

Axiom ax-hvaddid 31032
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvaddid (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)

Detailed syntax breakdown of Axiom ax-hvaddid
StepHypRef Expression
1 cA . . 3 class 𝐴
2 chba 30947 . . 3 class
31, 2wcel 2105 . 2 wff 𝐴 ∈ ℋ
4 c0v 30952 . . . 4 class 0
5 cva 30948 . . . 4 class +
61, 4, 5co 7430 . . 3 class (𝐴 + 0)
76, 1wceq 1536 . 2 wff (𝐴 + 0) = 𝐴
83, 7wi 4 1 wff (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
This axiom is referenced by:  hvaddlid  31051  hvpncan  31067  hvsubeq0i  31091  hvsubcan2i  31092  hvsubaddi  31094  hvsub0  31104  hvaddsub4  31106  norm3difi  31175  shsel1  31349  shunssi  31396  omlsilem  31430  pjoc1i  31459  pjchi  31460  spansncvi  31680  5oalem1  31682  5oalem2  31683  3oalem2  31691  pjssmii  31709  hoaddridi  31814  lnop0  31994  lnopmul  31995  lnfn0i  32070  lnfnmuli  32072  pjclem4  32227  pj3si  32235  hst1h  32255  sumdmdlem  32446
  Copyright terms: Public domain W3C validator