![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvaddid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvaddid | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | chba 30951 | . . 3 class ℋ | |
3 | 1, 2 | wcel 2108 | . 2 wff 𝐴 ∈ ℋ |
4 | c0v 30956 | . . . 4 class 0ℎ | |
5 | cva 30952 | . . . 4 class +ℎ | |
6 | 1, 4, 5 | co 7448 | . . 3 class (𝐴 +ℎ 0ℎ) |
7 | 6, 1 | wceq 1537 | . 2 wff (𝐴 +ℎ 0ℎ) = 𝐴 |
8 | 3, 7 | wi 4 | 1 wff (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvaddlid 31055 hvpncan 31071 hvsubeq0i 31095 hvsubcan2i 31096 hvsubaddi 31098 hvsub0 31108 hvaddsub4 31110 norm3difi 31179 shsel1 31353 shunssi 31400 omlsilem 31434 pjoc1i 31463 pjchi 31464 spansncvi 31684 5oalem1 31686 5oalem2 31687 3oalem2 31695 pjssmii 31713 hoaddridi 31818 lnop0 31998 lnopmul 31999 lnfn0i 32074 lnfnmuli 32076 pjclem4 32231 pj3si 32239 hst1h 32259 sumdmdlem 32450 |
Copyright terms: Public domain | W3C validator |