![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddlidi | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddlid.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
hvaddlidi | ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddlid.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddlid 30276 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 (class class class)co 7409 ℋchba 30172 +ℎ cva 30173 0ℎc0v 30177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 ax-hvcom 30254 ax-hv0cl 30256 ax-hvaddid 30257 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 |
This theorem is referenced by: hvsubeq0i 30316 hvaddcani 30318 hsn0elch 30501 hhssnv 30517 shscli 30570 |
Copyright terms: Public domain | W3C validator |