![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddlidi | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddlid.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
hvaddlidi | ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddlid.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddlid 31051 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℋchba 30947 +ℎ cva 30948 0ℎc0v 30952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 ax-hvcom 31029 ax-hv0cl 31031 ax-hvaddid 31032 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 |
This theorem is referenced by: hvsubeq0i 31091 hvaddcani 31093 hsn0elch 31276 hhssnv 31292 shscli 31345 |
Copyright terms: Public domain | W3C validator |