![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddlidi | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddlid.1 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
hvaddlidi | ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddlid.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddlid 30956 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0ℎ +ℎ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7424 ℋchba 30852 +ℎ cva 30853 0ℎc0v 30857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2697 ax-hvcom 30934 ax-hv0cl 30936 ax-hvaddid 30937 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-cleq 2718 |
This theorem is referenced by: hvsubeq0i 30996 hvaddcani 30998 hsn0elch 31181 hhssnv 31197 shscli 31250 |
Copyright terms: Public domain | W3C validator |