HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddlid Structured version   Visualization version   GIF version

Theorem hvaddlid 30953
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddlid (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)

Proof of Theorem hvaddlid
StepHypRef Expression
1 ax-hv0cl 30933 . . 3 0 ∈ ℋ
2 ax-hvcom 30931 . . 3 ((𝐴 ∈ ℋ ∧ 0 ∈ ℋ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 689 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = (0 + 𝐴))
4 ax-hvaddid 30934 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2768 1 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7416  chba 30849   + cva 30850  0c0v 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2697  ax-hvcom 30931  ax-hv0cl 30933  ax-hvaddid 30934
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1775  df-cleq 2718
This theorem is referenced by:  hv2neg  30958  hvaddlidi  30959  hvaddsub4  31008  hilablo  31090  hilid  31091  shunssi  31298  spanunsni  31509  5oalem2  31585  3oalem2  31593
  Copyright terms: Public domain W3C validator