| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddlid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddlid | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30985 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | ax-hvcom 30983 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
| 4 | ax-hvaddid 30986 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
| 5 | 3, 4 | eqtr3d 2770 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℋchba 30901 +ℎ cva 30902 0ℎc0v 30906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 ax-hvcom 30983 ax-hv0cl 30985 ax-hvaddid 30986 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: hv2neg 31010 hvaddlidi 31011 hvaddsub4 31060 hilablo 31142 hilid 31143 shunssi 31350 spanunsni 31561 5oalem2 31637 3oalem2 31645 |
| Copyright terms: Public domain | W3C validator |