![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddlid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddlid | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 31035 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom 31033 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
4 | ax-hvaddid 31036 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
5 | 3, 4 | eqtr3d 2782 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℋchba 30951 +ℎ cva 30952 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 ax-hvcom 31033 ax-hv0cl 31035 ax-hvaddid 31036 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: hv2neg 31060 hvaddlidi 31061 hvaddsub4 31110 hilablo 31192 hilid 31193 shunssi 31400 spanunsni 31611 5oalem2 31687 3oalem2 31695 |
Copyright terms: Public domain | W3C validator |