HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddlid Structured version   Visualization version   GIF version

Theorem hvaddlid 31055
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddlid (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)

Proof of Theorem hvaddlid
StepHypRef Expression
1 ax-hv0cl 31035 . . 3 0 ∈ ℋ
2 ax-hvcom 31033 . . 3 ((𝐴 ∈ ℋ ∧ 0 ∈ ℋ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 690 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = (0 + 𝐴))
4 ax-hvaddid 31036 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2782 1 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  chba 30951   + cva 30952  0c0v 30956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711  ax-hvcom 31033  ax-hv0cl 31035  ax-hvaddid 31036
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732
This theorem is referenced by:  hv2neg  31060  hvaddlidi  31061  hvaddsub4  31110  hilablo  31192  hilid  31193  shunssi  31400  spanunsni  31611  5oalem2  31687  3oalem2  31695
  Copyright terms: Public domain W3C validator