HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddlid Structured version   Visualization version   GIF version

Theorem hvaddlid 30998
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddlid (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)

Proof of Theorem hvaddlid
StepHypRef Expression
1 ax-hv0cl 30978 . . 3 0 ∈ ℋ
2 ax-hvcom 30976 . . 3 ((𝐴 ∈ ℋ ∧ 0 ∈ ℋ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 691 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = (0 + 𝐴))
4 ax-hvaddid 30979 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2768 1 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  chba 30894   + cva 30895  0c0v 30899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703  ax-hvcom 30976  ax-hv0cl 30978  ax-hvaddid 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723
This theorem is referenced by:  hv2neg  31003  hvaddlidi  31004  hvaddsub4  31053  hilablo  31135  hilid  31136  shunssi  31343  spanunsni  31554  5oalem2  31630  3oalem2  31638
  Copyright terms: Public domain W3C validator