| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvaddlid | Structured version Visualization version GIF version | ||
| Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvaddlid | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30989 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | ax-hvcom 30987 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
| 4 | ax-hvaddid 30990 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
| 5 | 3, 4 | eqtr3d 2773 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 0ℎc0v 30910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 ax-hvcom 30987 ax-hv0cl 30989 ax-hvaddid 30990 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: hv2neg 31014 hvaddlidi 31015 hvaddsub4 31064 hilablo 31146 hilid 31147 shunssi 31354 spanunsni 31565 5oalem2 31641 3oalem2 31649 |
| Copyright terms: Public domain | W3C validator |