HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddlid Structured version   Visualization version   GIF version

Theorem hvaddlid 30959
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddlid (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)

Proof of Theorem hvaddlid
StepHypRef Expression
1 ax-hv0cl 30939 . . 3 0 ∈ ℋ
2 ax-hvcom 30937 . . 3 ((𝐴 ∈ ℋ ∧ 0 ∈ ℋ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 691 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = (0 + 𝐴))
4 ax-hvaddid 30940 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2767 1 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7390  chba 30855   + cva 30856  0c0v 30860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702  ax-hvcom 30937  ax-hv0cl 30939  ax-hvaddid 30940
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722
This theorem is referenced by:  hv2neg  30964  hvaddlidi  30965  hvaddsub4  31014  hilablo  31096  hilid  31097  shunssi  31304  spanunsni  31515  5oalem2  31591  3oalem2  31599
  Copyright terms: Public domain W3C validator