HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddlid Structured version   Visualization version   GIF version

Theorem hvaddlid 31052
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvaddlid (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)

Proof of Theorem hvaddlid
StepHypRef Expression
1 ax-hv0cl 31032 . . 3 0 ∈ ℋ
2 ax-hvcom 31030 . . 3 ((𝐴 ∈ ℋ ∧ 0 ∈ ℋ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 691 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = (0 + 𝐴))
4 ax-hvaddid 31033 . 2 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2777 1 (𝐴 ∈ ℋ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  (class class class)co 7431  chba 30948   + cva 30949  0c0v 30953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706  ax-hvcom 31030  ax-hv0cl 31032  ax-hvaddid 31033
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727
This theorem is referenced by:  hv2neg  31057  hvaddlidi  31058  hvaddsub4  31107  hilablo  31189  hilid  31190  shunssi  31397  spanunsni  31608  5oalem2  31684  3oalem2  31692
  Copyright terms: Public domain W3C validator