![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddlid | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddlid | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30933 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom 30931 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
3 | 1, 2 | mpan2 689 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
4 | ax-hvaddid 30934 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
5 | 3, 4 | eqtr3d 2768 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7416 ℋchba 30849 +ℎ cva 30850 0ℎc0v 30854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2697 ax-hvcom 30931 ax-hv0cl 30933 ax-hvaddid 30934 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-cleq 2718 |
This theorem is referenced by: hv2neg 30958 hvaddlidi 30959 hvaddsub4 31008 hilablo 31090 hilid 31091 shunssi 31298 spanunsni 31509 5oalem2 31585 3oalem2 31593 |
Copyright terms: Public domain | W3C validator |