Step | Hyp | Ref
| Expression |
1 | | eleq1w 2834 |
. . . 4
⊢ (𝑎 = 𝑡 → (𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ)) |
2 | 1 | 3anbi1d 1437 |
. . 3
⊢ (𝑎 = 𝑡 → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ))) |
3 | | oveq1 7157 |
. . . . 5
⊢ (𝑎 = 𝑡 → (𝑎↑2) = (𝑡↑2)) |
4 | 3 | oveq1d 7165 |
. . . 4
⊢ (𝑎 = 𝑡 → ((𝑎↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑏↑2))) |
5 | 4 | eqeq1d 2760 |
. . 3
⊢ (𝑎 = 𝑡 → (((𝑎↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2))) |
6 | 2, 5 | imbi12d 348 |
. 2
⊢ (𝑎 = 𝑡 → (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)))) |
7 | | eleq1w 2834 |
. . . 4
⊢ (𝑏 = 𝑎 → (𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ)) |
8 | 7 | 3anbi2d 1438 |
. . 3
⊢ (𝑏 = 𝑎 → ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ))) |
9 | | oveq1 7157 |
. . . . 5
⊢ (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2)) |
10 | 9 | oveq2d 7166 |
. . . 4
⊢ (𝑏 = 𝑎 → ((𝑡↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑎↑2))) |
11 | 10 | eqeq1d 2760 |
. . 3
⊢ (𝑏 = 𝑎 → (((𝑡↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2))) |
12 | 8, 11 | imbi12d 348 |
. 2
⊢ (𝑏 = 𝑎 → (((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)))) |
13 | | eleq1w 2834 |
. . . . 5
⊢ (𝑡 = 𝑏 → (𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ)) |
14 | 13 | 3anbi1d 1437 |
. . . 4
⊢ (𝑡 = 𝑏 → ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ))) |
15 | | oveq1 7157 |
. . . . . 6
⊢ (𝑡 = 𝑏 → (𝑡↑2) = (𝑏↑2)) |
16 | 15 | oveq1d 7165 |
. . . . 5
⊢ (𝑡 = 𝑏 → ((𝑡↑2) + (𝑎↑2)) = ((𝑏↑2) + (𝑎↑2))) |
17 | 16 | eqeq1d 2760 |
. . . 4
⊢ (𝑡 = 𝑏 → (((𝑡↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))) |
18 | 14, 17 | imbi12d 348 |
. . 3
⊢ (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))) |
19 | | 3ancoma 1095 |
. . . . 5
⊢ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈
ℂ)) |
20 | 19 | imbi1i 353 |
. . . 4
⊢ (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))) |
21 | | sqcl 13534 |
. . . . . . . 8
⊢ (𝑏 ∈ ℂ → (𝑏↑2) ∈
ℂ) |
22 | 21 | 3ad2ant2 1131 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏↑2) ∈
ℂ) |
23 | | sqcl 13534 |
. . . . . . . 8
⊢ (𝑎 ∈ ℂ → (𝑎↑2) ∈
ℂ) |
24 | 23 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑎↑2) ∈
ℂ) |
25 | 22, 24 | addcomd 10880 |
. . . . . 6
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = ((𝑎↑2) + (𝑏↑2))) |
26 | 25 | eqeq1d 2760 |
. . . . 5
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (((𝑏↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))) |
27 | 26 | pm5.74i 274 |
. . . 4
⊢ (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))) |
28 | 20, 27 | bitri 278 |
. . 3
⊢ (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))) |
29 | 18, 28 | bitrdi 290 |
. 2
⊢ (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))) |
30 | 6, 12, 29 | ichcircshi 44361 |
1
⊢ [𝑎⇄𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) |