Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichexmpl2 Structured version   Visualization version   GIF version

Theorem ichexmpl2 47451
Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichexmpl2 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem ichexmpl2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2818 . . . 4 (𝑎 = 𝑡 → (𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ))
213anbi1d 1442 . . 3 (𝑎 = 𝑡 → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
3 oveq1 7417 . . . . 5 (𝑎 = 𝑡 → (𝑎↑2) = (𝑡↑2))
43oveq1d 7425 . . . 4 (𝑎 = 𝑡 → ((𝑎↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑏↑2)))
54eqeq1d 2738 . . 3 (𝑎 = 𝑡 → (((𝑎↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)))
62, 5imbi12d 344 . 2 (𝑎 = 𝑡 → (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2))))
7 eleq1w 2818 . . . 4 (𝑏 = 𝑎 → (𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ))
873anbi2d 1443 . . 3 (𝑏 = 𝑎 → ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
9 oveq1 7417 . . . . 5 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
109oveq2d 7426 . . . 4 (𝑏 = 𝑎 → ((𝑡↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑎↑2)))
1110eqeq1d 2738 . . 3 (𝑏 = 𝑎 → (((𝑡↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)))
128, 11imbi12d 344 . 2 (𝑏 = 𝑎 → (((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2))))
13 eleq1w 2818 . . . . 5 (𝑡 = 𝑏 → (𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ))
14133anbi1d 1442 . . . 4 (𝑡 = 𝑏 → ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
15 oveq1 7417 . . . . . 6 (𝑡 = 𝑏 → (𝑡↑2) = (𝑏↑2))
1615oveq1d 7425 . . . . 5 (𝑡 = 𝑏 → ((𝑡↑2) + (𝑎↑2)) = ((𝑏↑2) + (𝑎↑2)))
1716eqeq1d 2738 . . . 4 (𝑡 = 𝑏 → (((𝑡↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
1814, 17imbi12d 344 . . 3 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))))
19 3ancoma 1097 . . . . 5 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ))
2019imbi1i 349 . . . 4 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
21 sqcl 14141 . . . . . . . 8 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
22213ad2ant2 1134 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
23 sqcl 14141 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎↑2) ∈ ℂ)
24233ad2ant1 1133 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑎↑2) ∈ ℂ)
2522, 24addcomd 11442 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = ((𝑎↑2) + (𝑏↑2)))
2625eqeq1d 2738 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (((𝑏↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2726pm5.74i 271 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2820, 27bitri 275 . . 3 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2918, 28bitrdi 287 . 2 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))))
306, 12, 29ichcircshi 47435 1 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7410  cc 11132   + caddc 11137  2c2 12300  cexp 14084  [wich 47426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085  df-ich 47427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator