Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichexmpl2 Structured version   Visualization version   GIF version

Theorem ichexmpl2 46128
Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichexmpl2 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem ichexmpl2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . 4 (𝑎 = 𝑡 → (𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ))
213anbi1d 1440 . . 3 (𝑎 = 𝑡 → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
3 oveq1 7415 . . . . 5 (𝑎 = 𝑡 → (𝑎↑2) = (𝑡↑2))
43oveq1d 7423 . . . 4 (𝑎 = 𝑡 → ((𝑎↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑏↑2)))
54eqeq1d 2734 . . 3 (𝑎 = 𝑡 → (((𝑎↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)))
62, 5imbi12d 344 . 2 (𝑎 = 𝑡 → (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2))))
7 eleq1w 2816 . . . 4 (𝑏 = 𝑎 → (𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ))
873anbi2d 1441 . . 3 (𝑏 = 𝑎 → ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
9 oveq1 7415 . . . . 5 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
109oveq2d 7424 . . . 4 (𝑏 = 𝑎 → ((𝑡↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑎↑2)))
1110eqeq1d 2734 . . 3 (𝑏 = 𝑎 → (((𝑡↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)))
128, 11imbi12d 344 . 2 (𝑏 = 𝑎 → (((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2))))
13 eleq1w 2816 . . . . 5 (𝑡 = 𝑏 → (𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ))
14133anbi1d 1440 . . . 4 (𝑡 = 𝑏 → ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
15 oveq1 7415 . . . . . 6 (𝑡 = 𝑏 → (𝑡↑2) = (𝑏↑2))
1615oveq1d 7423 . . . . 5 (𝑡 = 𝑏 → ((𝑡↑2) + (𝑎↑2)) = ((𝑏↑2) + (𝑎↑2)))
1716eqeq1d 2734 . . . 4 (𝑡 = 𝑏 → (((𝑡↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
1814, 17imbi12d 344 . . 3 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))))
19 3ancoma 1098 . . . . 5 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ))
2019imbi1i 349 . . . 4 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
21 sqcl 14082 . . . . . . . 8 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
22213ad2ant2 1134 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
23 sqcl 14082 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎↑2) ∈ ℂ)
24233ad2ant1 1133 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑎↑2) ∈ ℂ)
2522, 24addcomd 11415 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = ((𝑎↑2) + (𝑏↑2)))
2625eqeq1d 2734 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (((𝑏↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2726pm5.74i 270 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2820, 27bitri 274 . . 3 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2918, 28bitrdi 286 . 2 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))))
306, 12, 29ichcircshi 46112 1 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  (class class class)co 7408  cc 11107   + caddc 11112  2c2 12266  cexp 14026  [wich 46103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-seq 13966  df-exp 14027  df-ich 46104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator