Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichexmpl2 Structured version   Visualization version   GIF version

Theorem ichexmpl2 47507
Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichexmpl2 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem ichexmpl2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2814 . . . 4 (𝑎 = 𝑡 → (𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ))
213anbi1d 1442 . . 3 (𝑎 = 𝑡 → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
3 oveq1 7353 . . . . 5 (𝑎 = 𝑡 → (𝑎↑2) = (𝑡↑2))
43oveq1d 7361 . . . 4 (𝑎 = 𝑡 → ((𝑎↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑏↑2)))
54eqeq1d 2733 . . 3 (𝑎 = 𝑡 → (((𝑎↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)))
62, 5imbi12d 344 . 2 (𝑎 = 𝑡 → (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2))))
7 eleq1w 2814 . . . 4 (𝑏 = 𝑎 → (𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ))
873anbi2d 1443 . . 3 (𝑏 = 𝑎 → ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
9 oveq1 7353 . . . . 5 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
109oveq2d 7362 . . . 4 (𝑏 = 𝑎 → ((𝑡↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑎↑2)))
1110eqeq1d 2733 . . 3 (𝑏 = 𝑎 → (((𝑡↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)))
128, 11imbi12d 344 . 2 (𝑏 = 𝑎 → (((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2))))
13 eleq1w 2814 . . . . 5 (𝑡 = 𝑏 → (𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ))
14133anbi1d 1442 . . . 4 (𝑡 = 𝑏 → ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
15 oveq1 7353 . . . . . 6 (𝑡 = 𝑏 → (𝑡↑2) = (𝑏↑2))
1615oveq1d 7361 . . . . 5 (𝑡 = 𝑏 → ((𝑡↑2) + (𝑎↑2)) = ((𝑏↑2) + (𝑎↑2)))
1716eqeq1d 2733 . . . 4 (𝑡 = 𝑏 → (((𝑡↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
1814, 17imbi12d 344 . . 3 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))))
19 3ancoma 1097 . . . . 5 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ))
2019imbi1i 349 . . . 4 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
21 sqcl 14025 . . . . . . . 8 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
22213ad2ant2 1134 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
23 sqcl 14025 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎↑2) ∈ ℂ)
24233ad2ant1 1133 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑎↑2) ∈ ℂ)
2522, 24addcomd 11315 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = ((𝑎↑2) + (𝑏↑2)))
2625eqeq1d 2733 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (((𝑏↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2726pm5.74i 271 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2820, 27bitri 275 . . 3 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2918, 28bitrdi 287 . 2 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))))
306, 12, 29ichcircshi 47491 1 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009  2c2 12180  cexp 13968  [wich 47482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969  df-ich 47483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator