Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichexmpl2 Structured version   Visualization version   GIF version

Theorem ichexmpl2 45752
Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023.)
Assertion
Ref Expression
ichexmpl2 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Distinct variable group:   𝑎,𝑏,𝑐

Proof of Theorem ichexmpl2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2817 . . . 4 (𝑎 = 𝑡 → (𝑎 ∈ ℂ ↔ 𝑡 ∈ ℂ))
213anbi1d 1441 . . 3 (𝑎 = 𝑡 → ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
3 oveq1 7368 . . . . 5 (𝑎 = 𝑡 → (𝑎↑2) = (𝑡↑2))
43oveq1d 7376 . . . 4 (𝑎 = 𝑡 → ((𝑎↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑏↑2)))
54eqeq1d 2735 . . 3 (𝑎 = 𝑡 → (((𝑎↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)))
62, 5imbi12d 345 . 2 (𝑎 = 𝑡 → (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2))))
7 eleq1w 2817 . . . 4 (𝑏 = 𝑎 → (𝑏 ∈ ℂ ↔ 𝑎 ∈ ℂ))
873anbi2d 1442 . . 3 (𝑏 = 𝑎 → ((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
9 oveq1 7368 . . . . 5 (𝑏 = 𝑎 → (𝑏↑2) = (𝑎↑2))
109oveq2d 7377 . . . 4 (𝑏 = 𝑎 → ((𝑡↑2) + (𝑏↑2)) = ((𝑡↑2) + (𝑎↑2)))
1110eqeq1d 2735 . . 3 (𝑏 = 𝑎 → (((𝑡↑2) + (𝑏↑2)) = (𝑐↑2) ↔ ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)))
128, 11imbi12d 345 . 2 (𝑏 = 𝑎 → (((𝑡 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑏↑2)) = (𝑐↑2)) ↔ ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2))))
13 eleq1w 2817 . . . . 5 (𝑡 = 𝑏 → (𝑡 ∈ ℂ ↔ 𝑏 ∈ ℂ))
14133anbi1d 1441 . . . 4 (𝑡 = 𝑏 → ((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ)))
15 oveq1 7368 . . . . . 6 (𝑡 = 𝑏 → (𝑡↑2) = (𝑏↑2))
1615oveq1d 7376 . . . . 5 (𝑡 = 𝑏 → ((𝑡↑2) + (𝑎↑2)) = ((𝑏↑2) + (𝑎↑2)))
1716eqeq1d 2735 . . . 4 (𝑡 = 𝑏 → (((𝑡↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
1814, 17imbi12d 345 . . 3 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2))))
19 3ancoma 1099 . . . . 5 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) ↔ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ))
2019imbi1i 350 . . . 4 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)))
21 sqcl 14032 . . . . . . . 8 (𝑏 ∈ ℂ → (𝑏↑2) ∈ ℂ)
22213ad2ant2 1135 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑏↑2) ∈ ℂ)
23 sqcl 14032 . . . . . . . 8 (𝑎 ∈ ℂ → (𝑎↑2) ∈ ℂ)
24233ad2ant1 1134 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (𝑎↑2) ∈ ℂ)
2522, 24addcomd 11365 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = ((𝑎↑2) + (𝑏↑2)))
2625eqeq1d 2735 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → (((𝑏↑2) + (𝑎↑2)) = (𝑐↑2) ↔ ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2726pm5.74i 271 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2820, 27bitri 275 . . 3 (((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑏↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2)))
2918, 28bitrdi 287 . 2 (𝑡 = 𝑏 → (((𝑡 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑡↑2) + (𝑎↑2)) = (𝑐↑2)) ↔ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))))
306, 12, 29ichcircshi 45736 1 [𝑎𝑏]((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎↑2) + (𝑏↑2)) = (𝑐↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  (class class class)co 7361  cc 11057   + caddc 11062  2c2 12216  cexp 13976  [wich 45727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-seq 13916  df-exp 13977  df-ich 45728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator