MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2a Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2a 27882
Description: Lemma for clwlkclwwlklem2 27884. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2a ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝑉   𝑖,𝐸   𝑖,𝐹   𝑃,𝑖   𝑅,𝑖,𝑥   𝑖,𝑉
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2a
StepHypRef Expression
1 simpl 486 . . . . . . . . . 10 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → 𝑥 < ((♯‘𝑃) − 2))
2 f1f1orn 6613 . . . . . . . . . . . . . 14 (𝐸:dom 𝐸1-1𝑅𝐸:dom 𝐸1-1-onto→ran 𝐸)
323ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
43adantr 484 . . . . . . . . . . . 12 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
54ad2antrl 727 . . . . . . . . . . 11 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
6 elfzo0 13127 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↔ (𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)))
7 lencl 13932 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → 𝑥 ∈ ℕ0)
98adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃))) → 𝑥 ∈ ℕ0)
10 elnn0z 12033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
11 0red 10682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → 0 ∈ ℝ)
12 zre 12024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
1312adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → 𝑥 ∈ ℝ)
14 nn0re 11943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
15 2re 11748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1714, 16resubcld 11106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1817adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → ((♯‘𝑃) − 2) ∈ ℝ)
19 lelttr 10769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → ((0 ≤ 𝑥𝑥 < ((♯‘𝑃) − 2)) → 0 < ((♯‘𝑃) − 2)))
2011, 13, 18, 19syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → ((0 ≤ 𝑥𝑥 < ((♯‘𝑃) − 2)) → 0 < ((♯‘𝑃) − 2)))
21 nn0z 12044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
22 2z 12053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2 ∈ ℤ
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
2421, 23zsubcld 12131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
2524anim1i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((♯‘𝑃) ∈ ℕ0 ∧ 0 < ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 < ((♯‘𝑃) − 2)))
26 elnnz 12030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (((♯‘𝑃) − 2) ∈ ℕ ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 < ((♯‘𝑃) − 2)))
2725, 26sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝑃) ∈ ℕ0 ∧ 0 < ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℕ)
28 nn0cn 11944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℂ)
29 peano2cnm 10990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ((♯‘𝑃) ∈ ℂ → ((♯‘𝑃) − 1) ∈ ℂ)
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℂ)
3130subid1d 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑃) ∈ ℕ0 → (((♯‘𝑃) − 1) − 0) = ((♯‘𝑃) − 1))
3231oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((♯‘𝑃) ∈ ℕ0 → ((((♯‘𝑃) − 1) − 0) − 1) = (((♯‘𝑃) − 1) − 1))
33 1cnd 10674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℂ)
3428, 33, 33subsub4d 11066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑃) ∈ ℕ0 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − (1 + 1)))
35 1p1e2 11799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (1 + 1) = 2
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ((♯‘𝑃) ∈ ℕ0 → (1 + 1) = 2)
3736oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − (1 + 1)) = ((♯‘𝑃) − 2))
3834, 37eqtrd 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((♯‘𝑃) ∈ ℕ0 → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
3932, 38eqtrd 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝑃) ∈ ℕ0 → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑃) − 2))
4039eleq1d 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝑃) ∈ ℕ0 → (((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ ↔ ((♯‘𝑃) − 2) ∈ ℕ))
4140adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝑃) ∈ ℕ0 ∧ 0 < ((♯‘𝑃) − 2)) → (((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ ↔ ((♯‘𝑃) − 2) ∈ ℕ))
4227, 41mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((♯‘𝑃) ∈ ℕ0 ∧ 0 < ((♯‘𝑃) − 2)) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ)
4342ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((♯‘𝑃) ∈ ℕ0 → (0 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4443adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → (0 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4520, 44syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑥 ∈ ℤ ∧ (♯‘𝑃) ∈ ℕ0) → ((0 ≤ 𝑥𝑥 < ((♯‘𝑃) − 2)) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
4645exp4b 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑥 ∈ ℤ → ((♯‘𝑃) ∈ ℕ0 → (0 ≤ 𝑥 → (𝑥 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))))
4746com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ ℤ → (0 ≤ 𝑥 → ((♯‘𝑃) ∈ ℕ0 → (𝑥 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))))
4847imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℤ ∧ 0 ≤ 𝑥) → ((♯‘𝑃) ∈ ℕ0 → (𝑥 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ)))
4910, 48sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (𝑥 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ)))
5049imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 2) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5150com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5251adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃)) → ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ))
5352impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃))) → ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ)
54 df-2 11737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 = (1 + 1)
5554a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑃) ∈ ℕ0 → 2 = (1 + 1))
5655oveq2d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = ((♯‘𝑃) − (1 + 1)))
5731eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) = (((♯‘𝑃) − 1) − 0))
5857oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑃) ∈ ℕ0 → (((♯‘𝑃) − 1) − 1) = ((((♯‘𝑃) − 1) − 0) − 1))
5956, 34, 583eqtr2d 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = ((((♯‘𝑃) − 1) − 0) − 1))
6059adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((♯‘𝑃) − 2) = ((((♯‘𝑃) − 1) − 0) − 1))
6160breq2d 5044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝑥 < ((((♯‘𝑃) − 1) − 0) − 1)))
6261biimpcd 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → 𝑥 < ((((♯‘𝑃) − 1) − 0) − 1)))
6362adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃)) → ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → 𝑥 < ((((♯‘𝑃) − 1) − 0) − 1)))
6463impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃))) → 𝑥 < ((((♯‘𝑃) − 1) − 0) − 1))
65 elfzo0 13127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)) ↔ (𝑥 ∈ ℕ0 ∧ ((((♯‘𝑃) − 1) − 0) − 1) ∈ ℕ ∧ 𝑥 < ((((♯‘𝑃) − 1) − 0) − 1)))
669, 53, 64, 65syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (𝑥 < ((♯‘𝑃) − 2) ∧ 2 ≤ (♯‘𝑃))) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))
6766exp32 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 2) → (2 ≤ (♯‘𝑃) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))
6867a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 1) → (𝑥 < ((♯‘𝑃) − 2) → (2 ≤ (♯‘𝑃) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
6968com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → (𝑥 < ((♯‘𝑃) − 1) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
7069ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → (𝑥 < ((♯‘𝑃) − 1) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))))
7170com25 99 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℕ0 → (𝑥 < ((♯‘𝑃) − 1) → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))))
7271imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
73723adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
7473com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) ∈ ℕ0 → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
757, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ Word 𝑉 → (2 ≤ (♯‘𝑃) → (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1))))))
7675imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))
77763adant1 1127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 < ((♯‘𝑃) − 2) → ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))
786, 77syl7bi 258 . . . . . . . . . . . . . . . . . . . 20 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 < ((♯‘𝑃) − 2) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))
7978com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (𝑥 < ((♯‘𝑃) − 2) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))))
8079imp31 421 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃))) → 𝑥 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)))
81 fveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑥 → (𝑃𝑖) = (𝑃𝑥))
82 fvoveq1 7173 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑥 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝑥 + 1)))
8381, 82preq12d 4634 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑥 → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
8483eleq1d 2836 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑥 → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8584adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃))) ∧ 𝑖 = 𝑥) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8680, 85rspcdv 3533 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) ∧ (𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃))) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
8786ex 416 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
8887com13 88 . . . . . . . . . . . . . . 15 (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
8988ad2antrl 727 . . . . . . . . . . . . . 14 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)))
9089impcom 411 . . . . . . . . . . . . 13 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((𝑥 ∈ (0..^((♯‘𝑃) − 1)) ∧ 𝑥 < ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
9190expdimp 456 . . . . . . . . . . . 12 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸))
9291impcom 411 . . . . . . . . . . 11 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸)
93 f1ocnvdm 7033 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
945, 92, 93syl2anc 587 . . . . . . . . . 10 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸)
951, 94jca 515 . . . . . . . . 9 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → (𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸))
9695orcd 870 . . . . . . . 8 ((𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ((𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
97 simpl 486 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ¬ 𝑥 < ((♯‘𝑃) − 2))
984ad2antrl 727 . . . . . . . . . . 11 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → 𝐸:dom 𝐸1-1-onto→ran 𝐸)
99 nn0z 12044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
100 peano2zm 12064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
10121, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
10299, 101anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ))
103 zltlem1 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ) → (𝑥 < ((♯‘𝑃) − 1) ↔ 𝑥 ≤ (((♯‘𝑃) − 1) − 1)))
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 1) ↔ 𝑥 ≤ (((♯‘𝑃) − 1) − 1)))
10538adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑃) − 1) − 1) = ((♯‘𝑃) − 2))
106105breq2d 5044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 ≤ (((♯‘𝑃) − 1) − 1) ↔ 𝑥 ≤ ((♯‘𝑃) − 2)))
107106biimpd 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 ≤ (((♯‘𝑃) − 1) − 1) → 𝑥 ≤ ((♯‘𝑃) − 2)))
108104, 107sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 < ((♯‘𝑃) − 1) → 𝑥 ≤ ((♯‘𝑃) − 2)))
109108impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0𝑥 ≤ ((♯‘𝑃) − 2)))
110109imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) → 𝑥 ≤ ((♯‘𝑃) − 2))
111 nn0re 11943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
112111adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) → 𝑥 ∈ ℝ)
113112, 17anim12i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ))
114 lenlt 10757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 ≤ ((♯‘𝑃) − 2) ↔ ¬ ((♯‘𝑃) − 2) < 𝑥))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) → (𝑥 ≤ ((♯‘𝑃) − 2) ↔ ¬ ((♯‘𝑃) − 2) < 𝑥))
116110, 115mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) → ¬ ((♯‘𝑃) − 2) < 𝑥)
117116anim1i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((♯‘𝑃) − 2)) → (¬ ((♯‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((♯‘𝑃) − 2)))
118113ancomd 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ))
119118adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ))
120 lttri3 10762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝑃) − 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((♯‘𝑃) − 2) = 𝑥 ↔ (¬ ((♯‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((♯‘𝑃) − 2))))
121119, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((♯‘𝑃) − 2)) → (((♯‘𝑃) − 2) = 𝑥 ↔ (¬ ((♯‘𝑃) − 2) < 𝑥 ∧ ¬ 𝑥 < ((♯‘𝑃) − 2))))
122117, 121mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) ∧ (♯‘𝑃) ∈ ℕ0) ∧ ¬ 𝑥 < ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) = 𝑥)
123122exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) → ((♯‘𝑃) ∈ ℕ0 → (¬ 𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) − 2) = 𝑥)))
124123com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ ℕ0𝑥 < ((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = 𝑥)))
1251243adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ 𝑥 < ((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = 𝑥)))
1266, 125sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = 𝑥)))
127126impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) = 𝑥))
1287, 127syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ Word 𝑉 → ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → ((♯‘𝑃) − 2) = 𝑥))
1291283ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → ((♯‘𝑃) − 2) = 𝑥))
130129imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ((♯‘𝑃) − 2) = 𝑥)
131130fveq2d 6662 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → (𝑃‘((♯‘𝑃) − 2)) = (𝑃𝑥))
132131preq1d 4632 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃𝑥), (𝑃‘0)})
133132eleq1d 2836 . . . . . . . . . . . . . . . . . . . 20 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
134133biimpd 232 . . . . . . . . . . . . . . . . . . 19 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
135134exp32 424 . . . . . . . . . . . . . . . . . 18 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
136135com12 32 . . . . . . . . . . . . . . . . 17 𝑥 < ((♯‘𝑃) − 2) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
137136com14 96 . . . . . . . . . . . . . . . 16 ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
138137adantl 485 . . . . . . . . . . . . . . 15 ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
139138adantl 485 . . . . . . . . . . . . . 14 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
140139com12 32 . . . . . . . . . . . . 13 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → (𝑥 ∈ (0..^((♯‘𝑃) − 1)) → (¬ 𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))))
141140imp31 421 . . . . . . . . . . . 12 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → (¬ 𝑥 < ((♯‘𝑃) − 2) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸))
142141impcom 411 . . . . . . . . . . 11 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸)
143 f1ocnvdm 7033 . . . . . . . . . . 11 ((𝐸:dom 𝐸1-1-onto→ran 𝐸 ∧ {(𝑃𝑥), (𝑃‘0)} ∈ ran 𝐸) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)
14498, 142, 143syl2anc 587 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)
14597, 144jca 515 . . . . . . . . 9 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸))
146145olcd 871 . . . . . . . 8 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1)))) → ((𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
14796, 146pm2.61ian 811 . . . . . . 7 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → ((𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
148 ifel 4464 . . . . . . 7 (if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ dom 𝐸 ↔ ((𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) ∈ dom 𝐸) ∨ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ (𝐸‘{(𝑃𝑥), (𝑃‘0)}) ∈ dom 𝐸)))
149147, 148sylibr 237 . . . . . 6 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) ∧ 𝑥 ∈ (0..^((♯‘𝑃) − 1))) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) ∈ dom 𝐸)
150 clwlkclwwlklem2.f . . . . . 6 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
151149, 150fmptd 6869 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸)
152 iswrdi 13917 . . . . 5 (𝐹:(0..^((♯‘𝑃) − 1))⟶dom 𝐸𝐹 ∈ Word dom 𝐸)
153151, 152syl 17 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝐹 ∈ Word dom 𝐸)
154 wrdf 13918 . . . . . . . 8 (𝑃 ∈ Word 𝑉𝑃:(0..^(♯‘𝑃))⟶𝑉)
155154adantr 484 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃:(0..^(♯‘𝑃))⟶𝑉)
156150clwlkclwwlklem2a2 27877 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
157 fzoval 13088 . . . . . . . . . . 11 ((♯‘𝑃) ∈ ℤ → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
1587, 21, 1573syl 18 . . . . . . . . . 10 (𝑃 ∈ Word 𝑉 → (0..^(♯‘𝑃)) = (0...((♯‘𝑃) − 1)))
159 oveq2 7158 . . . . . . . . . . 11 (((♯‘𝑃) − 1) = (♯‘𝐹) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝐹)))
160159eqcoms 2766 . . . . . . . . . 10 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0...((♯‘𝑃) − 1)) = (0...(♯‘𝐹)))
161158, 160sylan9eq 2813 . . . . . . . . 9 ((𝑃 ∈ Word 𝑉 ∧ (♯‘𝐹) = ((♯‘𝑃) − 1)) → (0..^(♯‘𝑃)) = (0...(♯‘𝐹)))
162156, 161syldan 594 . . . . . . . 8 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (0..^(♯‘𝑃)) = (0...(♯‘𝐹)))
163162feq2d 6484 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃:(0..^(♯‘𝑃))⟶𝑉𝑃:(0...(♯‘𝐹))⟶𝑉))
164155, 163mpbid 235 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
1651643adant1 1127 . . . . 5 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
166165adantr 484 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → 𝑃:(0...(♯‘𝐹))⟶𝑉)
167 clwlkclwwlklem2a1 27876 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
1681673adant1 1127 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
169168imp 410 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
1701563adant1 1127 . . . . . . . 8 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
171170adantr 484 . . . . . . 7 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (♯‘𝐹) = ((♯‘𝑃) − 1))
172150clwlkclwwlklem2a4 27881 . . . . . . . . . 10 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
173172impl 459 . . . . . . . . 9 ((((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) ∧ 𝑖 ∈ (0..^((♯‘𝑃) − 1))) → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → (𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
174173ralimdva 3108 . . . . . . . 8 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
175 oveq2 7158 . . . . . . . . . 10 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (0..^(♯‘𝐹)) = (0..^((♯‘𝑃) − 1)))
176175raleqdv 3329 . . . . . . . . 9 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
177176imbi2d 344 . . . . . . . 8 ((♯‘𝐹) = ((♯‘𝑃) − 1) → ((∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ↔ (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^((♯‘𝑃) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
178174, 177syl5ibr 249 . . . . . . 7 ((♯‘𝐹) = ((♯‘𝑃) − 1) → (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})))
179171, 178mpcom 38 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (lastS‘𝑃) = (𝑃‘0)) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
180179adantrr 716 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (∀𝑖 ∈ (0..^((♯‘𝑃) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
181169, 180mpd 15 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
182153, 166, 1813jca 1125 . . 3 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
183150clwlkclwwlklem2a3 27878 . . . . . . . . . 10 ((𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
1841833adant1 1127 . . . . . . . . 9 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘(♯‘𝐹)) = (lastS‘𝑃))
185184eqcomd 2764 . . . . . . . 8 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (lastS‘𝑃) = (𝑃‘(♯‘𝐹)))
186185eqeq2d 2769 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((𝑃‘0) = (lastS‘𝑃) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
187186biimpcd 252 . . . . . 6 ((𝑃‘0) = (lastS‘𝑃) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘0) = (𝑃‘(♯‘𝐹))))
188187eqcoms 2766 . . . . 5 ((lastS‘𝑃) = (𝑃‘0) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘0) = (𝑃‘(♯‘𝐹))))
189188adantr 484 . . . 4 (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (𝑃‘0) = (𝑃‘(♯‘𝐹))))
190189impcom 411 . . 3 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → (𝑃‘0) = (𝑃‘(♯‘𝐹)))
191182, 190jca 515 . 2 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
192191ex 416 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3070  ifcif 4420  {cpr 4524   class class class wbr 5032  cmpt 5112  ccnv 5523  dom cdm 5524  ran crn 5525  wf 6331  1-1wf1 6332  1-1-ontowf1o 6334  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   + caddc 10578   < clt 10713  cle 10714  cmin 10908  cn 11674  2c2 11729  0cn0 11934  cz 12020  ...cfz 12939  ..^cfzo 13082  chash 13740  Word cword 13913  lastSclsw 13961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-lsw 13962
This theorem is referenced by:  clwlkclwwlklem1  27883
  Copyright terms: Public domain W3C validator