Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifcl | Structured version Visualization version GIF version |
Description: Membership (closure) of a conditional operator. (Contributed by NM, 4-Apr-2005.) |
Ref | Expression |
---|---|
ifcl | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2839 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝜑, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2839 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝜑, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | 1, 2 | ifboth 4462 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → if(𝜑, 𝐴, 𝐵) ∈ 𝐶) |
Copyright terms: Public domain | W3C validator |