Proof of Theorem cantnflem1d
Step | Hyp | Ref
| Expression |
1 | | cantnfs.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ On) |
2 | | cantnfs.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ On) |
3 | | cantnfs.s |
. . . . . . . . 9
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
4 | | oemapval.t |
. . . . . . . . 9
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
5 | | oemapval.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
6 | | oemapval.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
7 | | oemapvali.r |
. . . . . . . . 9
⊢ (𝜑 → 𝐹𝑇𝐺) |
8 | | oemapvali.x |
. . . . . . . . 9
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
9 | 3, 1, 2, 4, 5, 6, 7, 8 | oemapvali 9372 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
10 | 9 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
11 | | onelon 6276 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
12 | 2, 10, 11 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ On) |
13 | | oecl 8329 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑o 𝑋) ∈ On) |
14 | 1, 12, 13 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐴 ↑o 𝑋) ∈ On) |
15 | 3, 1, 2 | cantnfs 9354 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
16 | 6, 15 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
17 | 16 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
18 | 17, 10 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) |
19 | | onelon 6276 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐺‘𝑋) ∈ 𝐴) → (𝐺‘𝑋) ∈ On) |
20 | 1, 18, 19 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝑋) ∈ On) |
21 | | omcl 8328 |
. . . . 5
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ (𝐺‘𝑋) ∈ On) → ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ∈ On) |
22 | 14, 20, 21 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ∈ On) |
23 | | ovexd 7290 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ∈ V) |
24 | | cantnflem1.o |
. . . . . . . . . . . 12
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
25 | 3, 1, 2, 24, 6 | cantnfcl 9355 |
. . . . . . . . . . 11
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω)) |
26 | 25 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → E We (𝐺 supp ∅)) |
27 | 24 | oiiso 9226 |
. . . . . . . . . 10
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
28 | 23, 26, 27 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
29 | | isof1o 7174 |
. . . . . . . . 9
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
31 | | f1ocnv 6712 |
. . . . . . . 8
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) → ◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂) |
32 | | f1of 6700 |
. . . . . . . 8
⊢ (◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
33 | 30, 31, 32 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
34 | 3, 1, 2, 4, 5, 6, 7, 8 | cantnflem1a 9373 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
35 | 33, 34 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
36 | 25 | simprd 495 |
. . . . . 6
⊢ (𝜑 → dom 𝑂 ∈ ω) |
37 | | elnn 7698 |
. . . . . 6
⊢ (((◡𝑂‘𝑋) ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → (◡𝑂‘𝑋) ∈ ω) |
38 | 35, 36, 37 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ ω) |
39 | | cantnflem1.h |
. . . . . . 7
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐺‘(𝑂‘𝑘))) +o 𝑧)), ∅) |
40 | 39 | cantnfvalf 9353 |
. . . . . 6
⊢ 𝐻:ω⟶On |
41 | 40 | ffvelrni 6942 |
. . . . 5
⊢ ((◡𝑂‘𝑋) ∈ ω → (𝐻‘(◡𝑂‘𝑋)) ∈ On) |
42 | 38, 41 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐻‘(◡𝑂‘𝑋)) ∈ On) |
43 | | oaword1 8345 |
. . . 4
⊢ ((((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ∈ On ∧ (𝐻‘(◡𝑂‘𝑋)) ∈ On) → ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ⊆ (((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) +o (𝐻‘(◡𝑂‘𝑋)))) |
44 | 22, 42, 43 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ⊆ (((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) +o (𝐻‘(◡𝑂‘𝑋)))) |
45 | 3, 1, 2, 24, 6, 39 | cantnfsuc 9358 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝑂‘𝑋) ∈ ω) → (𝐻‘suc (◡𝑂‘𝑋)) = (((𝐴 ↑o (𝑂‘(◡𝑂‘𝑋))) ·o (𝐺‘(𝑂‘(◡𝑂‘𝑋)))) +o (𝐻‘(◡𝑂‘𝑋)))) |
46 | 38, 45 | mpdan 683 |
. . . 4
⊢ (𝜑 → (𝐻‘suc (◡𝑂‘𝑋)) = (((𝐴 ↑o (𝑂‘(◡𝑂‘𝑋))) ·o (𝐺‘(𝑂‘(◡𝑂‘𝑋)))) +o (𝐻‘(◡𝑂‘𝑋)))) |
47 | | f1ocnvfv2 7130 |
. . . . . . . 8
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
48 | 30, 34, 47 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
49 | 48 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → (𝐴 ↑o (𝑂‘(◡𝑂‘𝑋))) = (𝐴 ↑o 𝑋)) |
50 | 48 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (𝐺‘(𝑂‘(◡𝑂‘𝑋))) = (𝐺‘𝑋)) |
51 | 49, 50 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → ((𝐴 ↑o (𝑂‘(◡𝑂‘𝑋))) ·o (𝐺‘(𝑂‘(◡𝑂‘𝑋)))) = ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋))) |
52 | 51 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → (((𝐴 ↑o (𝑂‘(◡𝑂‘𝑋))) ·o (𝐺‘(𝑂‘(◡𝑂‘𝑋)))) +o (𝐻‘(◡𝑂‘𝑋))) = (((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) +o (𝐻‘(◡𝑂‘𝑋)))) |
53 | 46, 52 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝐻‘suc (◡𝑂‘𝑋)) = (((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) +o (𝐻‘(◡𝑂‘𝑋)))) |
54 | 44, 53 | sseqtrrd 3958 |
. 2
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)) ⊆ (𝐻‘suc (◡𝑂‘𝑋))) |
55 | | onss 7611 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
56 | 2, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ On) |
57 | 56 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
58 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑋 ∈ On) |
59 | | onsseleq 6292 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥 ⊆ 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋))) |
60 | 57, 58, 59 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋))) |
61 | | orcom 866 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋) ↔ (𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋)) |
62 | 60, 61 | bitrdi 286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ 𝑋 ↔ (𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋))) |
63 | 62 | ifbid 4479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅) = if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅)) |
64 | 63 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅))) |
65 | 64 | fveq2d 6760 |
. . . 4
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅)))) |
66 | 3, 1, 2 | cantnfs 9354 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
67 | 5, 66 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
68 | 67 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
69 | 68 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐹‘𝑦) ∈ 𝐴) |
70 | 18 | ne0d 4266 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≠ ∅) |
71 | | on0eln0 6306 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
72 | 1, 71 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
73 | 70, 72 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈ 𝐴) |
74 | 73 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∅ ∈ 𝐴) |
75 | 69, 74 | ifcld 4502 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅) ∈ 𝐴) |
76 | 75 | fmpttd 6971 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)):𝐵⟶𝐴) |
77 | | 0ex 5226 |
. . . . . . . . 9
⊢ ∅
∈ V |
78 | 77 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈
V) |
79 | 67 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 finSupp ∅) |
80 | 68, 2, 78, 79 | fsuppmptif 9088 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) finSupp
∅) |
81 | 3, 1, 2 | cantnfs 9354 |
. . . . . . 7
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) ∈ 𝑆 ↔ ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)):𝐵⟶𝐴 ∧ (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) finSupp
∅))) |
82 | 76, 80, 81 | mpbir2and 709 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) ∈ 𝑆) |
83 | 68, 10 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐴) |
84 | | eldifn 4058 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∖ 𝑋) → ¬ 𝑦 ∈ 𝑋) |
85 | 84 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∖ 𝑋)) → ¬ 𝑦 ∈ 𝑋) |
86 | 85 | iffalsed 4467 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐵 ∖ 𝑋)) → if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅) = ∅) |
87 | 86, 2 | suppss2 7987 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) supp ∅) ⊆ 𝑋) |
88 | | ifor 4510 |
. . . . . . . 8
⊢ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅) = if(𝑥 = 𝑋, (𝐹‘𝑥), if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅)) |
89 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
90 | 89 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
91 | 90 | ifeq1da 4487 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → if(𝑥 = 𝑋, (𝐹‘𝑥), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹‘𝑋), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥))) |
92 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋)) |
93 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
94 | 92, 93 | ifbieq1d 4480 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅) = if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅)) |
95 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) = (𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)) |
96 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑥) ∈ V |
97 | 96, 77 | ifex 4506 |
. . . . . . . . . . 11
⊢ if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅) ∈ V |
98 | 94, 95, 97 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥) = if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅)) |
99 | 98 | ifeq2d 4476 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → if(𝑥 = 𝑋, (𝐹‘𝑥), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹‘𝑥), if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅))) |
100 | 91, 99 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 → if(𝑥 = 𝑋, (𝐹‘𝑋), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹‘𝑥), if(𝑥 ∈ 𝑋, (𝐹‘𝑥), ∅))) |
101 | 88, 100 | eqtr4id 2798 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅) = if(𝑥 = 𝑋, (𝐹‘𝑋), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥))) |
102 | 101 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 𝑋, (𝐹‘𝑋), ((𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))‘𝑥))) |
103 | 3, 1, 2, 82, 10, 83, 87, 102 | cantnfp1 9369 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)))))) |
104 | 103 | simprd 495 |
. . . 4
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = 𝑋 ∨ 𝑥 ∈ 𝑋), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))))) |
105 | 65, 104 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) = (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))))) |
106 | | onelon 6276 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐹‘𝑋) ∈ 𝐴) → (𝐹‘𝑋) ∈ On) |
107 | 1, 83, 106 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑋) ∈ On) |
108 | | omsuc 8318 |
. . . . . 6
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ (𝐹‘𝑋) ∈ On) → ((𝐴 ↑o 𝑋) ·o suc (𝐹‘𝑋)) = (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋))) |
109 | 14, 107, 108 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o suc (𝐹‘𝑋)) = (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋))) |
110 | | eloni 6261 |
. . . . . . . 8
⊢ ((𝐺‘𝑋) ∈ On → Ord (𝐺‘𝑋)) |
111 | 20, 110 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Ord (𝐺‘𝑋)) |
112 | 9 | simp2d 1141 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑋) ∈ (𝐺‘𝑋)) |
113 | | ordsucss 7640 |
. . . . . . 7
⊢ (Ord
(𝐺‘𝑋) → ((𝐹‘𝑋) ∈ (𝐺‘𝑋) → suc (𝐹‘𝑋) ⊆ (𝐺‘𝑋))) |
114 | 111, 112,
113 | sylc 65 |
. . . . . 6
⊢ (𝜑 → suc (𝐹‘𝑋) ⊆ (𝐺‘𝑋)) |
115 | | suceloni 7635 |
. . . . . . . 8
⊢ ((𝐹‘𝑋) ∈ On → suc (𝐹‘𝑋) ∈ On) |
116 | 107, 115 | syl 17 |
. . . . . . 7
⊢ (𝜑 → suc (𝐹‘𝑋) ∈ On) |
117 | | omwordi 8364 |
. . . . . . 7
⊢ ((suc
(𝐹‘𝑋) ∈ On ∧ (𝐺‘𝑋) ∈ On ∧ (𝐴 ↑o 𝑋) ∈ On) → (suc (𝐹‘𝑋) ⊆ (𝐺‘𝑋) → ((𝐴 ↑o 𝑋) ·o suc (𝐹‘𝑋)) ⊆ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)))) |
118 | 116, 20, 14, 117 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (suc (𝐹‘𝑋) ⊆ (𝐺‘𝑋) → ((𝐴 ↑o 𝑋) ·o suc (𝐹‘𝑋)) ⊆ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋)))) |
119 | 114, 118 | mpd 15 |
. . . . 5
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o suc (𝐹‘𝑋)) ⊆ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋))) |
120 | 109, 119 | eqsstrrd 3956 |
. . . 4
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋)) ⊆ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋))) |
121 | 3, 1, 2, 82, 73, 12, 87 | cantnflt2 9361 |
. . . . 5
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ (𝐴 ↑o 𝑋)) |
122 | | onelon 6276 |
. . . . . . 7
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ (𝐴 ↑o 𝑋)) → ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ On) |
123 | 14, 121, 122 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ On) |
124 | | omcl 8328 |
. . . . . . 7
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ (𝐹‘𝑋) ∈ On) → ((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) ∈ On) |
125 | 14, 107, 124 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) ∈ On) |
126 | | oaord 8340 |
. . . . . 6
⊢ ((((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ On ∧ (𝐴 ↑o 𝑋) ∈ On ∧ ((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ (𝐴 ↑o 𝑋) ↔ (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)))) ∈ (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋)))) |
127 | 123, 14, 125, 126 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅))) ∈ (𝐴 ↑o 𝑋) ↔ (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)))) ∈ (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋)))) |
128 | 121, 127 | mpbid 231 |
. . . 4
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)))) ∈ (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o (𝐴 ↑o 𝑋))) |
129 | 120, 128 | sseldd 3918 |
. . 3
⊢ (𝜑 → (((𝐴 ↑o 𝑋) ·o (𝐹‘𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦 ∈ 𝐵 ↦ if(𝑦 ∈ 𝑋, (𝐹‘𝑦), ∅)))) ∈ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋))) |
130 | 105, 129 | eqeltrd 2839 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ ((𝐴 ↑o 𝑋) ·o (𝐺‘𝑋))) |
131 | 54, 130 | sseldd 3918 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |