MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflem1d Structured version   Visualization version   GIF version

Theorem cantnflem1d 9641
Description: Lemma for cantnf 9646. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
cantnflem1.o 𝑂 = OrdIso( E , (𝐺 supp ∅))
cantnflem1.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐺‘(𝑂𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnflem1d (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)))
Distinct variable groups:   𝑘,𝑐,𝑤,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑘,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐,𝑘   𝑘,𝐹,𝑤,𝑥,𝑦,𝑧   𝑆,𝑐,𝑘,𝑥,𝑦,𝑧   𝐺,𝑐,𝑘,𝑤,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦   𝑘,𝑂,𝑤,𝑥,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑋,𝑤,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝐻(𝑧,𝑤,𝑘,𝑐)   𝑂(𝑐)   𝑋(𝑐)

Proof of Theorem cantnflem1d
StepHypRef Expression
1 cantnfs.a . . . . . 6 (𝜑𝐴 ∈ On)
2 cantnfs.b . . . . . . 7 (𝜑𝐵 ∈ On)
3 cantnfs.s . . . . . . . . 9 𝑆 = dom (𝐴 CNF 𝐵)
4 oemapval.t . . . . . . . . 9 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
5 oemapval.f . . . . . . . . 9 (𝜑𝐹𝑆)
6 oemapval.g . . . . . . . . 9 (𝜑𝐺𝑆)
7 oemapvali.r . . . . . . . . 9 (𝜑𝐹𝑇𝐺)
8 oemapvali.x . . . . . . . . 9 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
93, 1, 2, 4, 5, 6, 7, 8oemapvali 9637 . . . . . . . 8 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
109simp1d 1142 . . . . . . 7 (𝜑𝑋𝐵)
11 onelon 6357 . . . . . . 7 ((𝐵 ∈ On ∧ 𝑋𝐵) → 𝑋 ∈ On)
122, 10, 11syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ On)
13 oecl 8501 . . . . . 6 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
141, 12, 13syl2anc 584 . . . . 5 (𝜑 → (𝐴o 𝑋) ∈ On)
153, 1, 2cantnfs 9619 . . . . . . . . 9 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
166, 15mpbid 232 . . . . . . . 8 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1716simpld 494 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1817, 10ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ 𝐴)
19 onelon 6357 . . . . . 6 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
201, 18, 19syl2anc 584 . . . . 5 (𝜑 → (𝐺𝑋) ∈ On)
21 omcl 8500 . . . . 5 (((𝐴o 𝑋) ∈ On ∧ (𝐺𝑋) ∈ On) → ((𝐴o 𝑋) ·o (𝐺𝑋)) ∈ On)
2214, 20, 21syl2anc 584 . . . 4 (𝜑 → ((𝐴o 𝑋) ·o (𝐺𝑋)) ∈ On)
23 ovexd 7422 . . . . . . . . . 10 (𝜑 → (𝐺 supp ∅) ∈ V)
24 cantnflem1.o . . . . . . . . . . . 12 𝑂 = OrdIso( E , (𝐺 supp ∅))
253, 1, 2, 24, 6cantnfcl 9620 . . . . . . . . . . 11 (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω))
2625simpld 494 . . . . . . . . . 10 (𝜑 → E We (𝐺 supp ∅))
2724oiiso 9490 . . . . . . . . . 10 (((𝐺 supp ∅) ∈ V ∧ E We (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
2823, 26, 27syl2anc 584 . . . . . . . . 9 (𝜑𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)))
29 isof1o 7298 . . . . . . . . 9 (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
3028, 29syl 17 . . . . . . . 8 (𝜑𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅))
31 f1ocnv 6812 . . . . . . . 8 (𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) → 𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂)
32 f1of 6800 . . . . . . . 8 (𝑂:(𝐺 supp ∅)–1-1-onto→dom 𝑂𝑂:(𝐺 supp ∅)⟶dom 𝑂)
3330, 31, 323syl 18 . . . . . . 7 (𝜑𝑂:(𝐺 supp ∅)⟶dom 𝑂)
343, 1, 2, 4, 5, 6, 7, 8cantnflem1a 9638 . . . . . . 7 (𝜑𝑋 ∈ (𝐺 supp ∅))
3533, 34ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝑂𝑋) ∈ dom 𝑂)
3625simprd 495 . . . . . 6 (𝜑 → dom 𝑂 ∈ ω)
37 elnn 7853 . . . . . 6 (((𝑂𝑋) ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → (𝑂𝑋) ∈ ω)
3835, 36, 37syl2anc 584 . . . . 5 (𝜑 → (𝑂𝑋) ∈ ω)
39 cantnflem1.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑂𝑘)) ·o (𝐺‘(𝑂𝑘))) +o 𝑧)), ∅)
4039cantnfvalf 9618 . . . . . 6 𝐻:ω⟶On
4140ffvelcdmi 7055 . . . . 5 ((𝑂𝑋) ∈ ω → (𝐻‘(𝑂𝑋)) ∈ On)
4238, 41syl 17 . . . 4 (𝜑 → (𝐻‘(𝑂𝑋)) ∈ On)
43 oaword1 8516 . . . 4 ((((𝐴o 𝑋) ·o (𝐺𝑋)) ∈ On ∧ (𝐻‘(𝑂𝑋)) ∈ On) → ((𝐴o 𝑋) ·o (𝐺𝑋)) ⊆ (((𝐴o 𝑋) ·o (𝐺𝑋)) +o (𝐻‘(𝑂𝑋))))
4422, 42, 43syl2anc 584 . . 3 (𝜑 → ((𝐴o 𝑋) ·o (𝐺𝑋)) ⊆ (((𝐴o 𝑋) ·o (𝐺𝑋)) +o (𝐻‘(𝑂𝑋))))
453, 1, 2, 24, 6, 39cantnfsuc 9623 . . . . 5 ((𝜑 ∧ (𝑂𝑋) ∈ ω) → (𝐻‘suc (𝑂𝑋)) = (((𝐴o (𝑂‘(𝑂𝑋))) ·o (𝐺‘(𝑂‘(𝑂𝑋)))) +o (𝐻‘(𝑂𝑋))))
4638, 45mpdan 687 . . . 4 (𝜑 → (𝐻‘suc (𝑂𝑋)) = (((𝐴o (𝑂‘(𝑂𝑋))) ·o (𝐺‘(𝑂‘(𝑂𝑋)))) +o (𝐻‘(𝑂𝑋))))
47 f1ocnvfv2 7252 . . . . . . . 8 ((𝑂:dom 𝑂1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(𝑂𝑋)) = 𝑋)
4830, 34, 47syl2anc 584 . . . . . . 7 (𝜑 → (𝑂‘(𝑂𝑋)) = 𝑋)
4948oveq2d 7403 . . . . . 6 (𝜑 → (𝐴o (𝑂‘(𝑂𝑋))) = (𝐴o 𝑋))
5048fveq2d 6862 . . . . . 6 (𝜑 → (𝐺‘(𝑂‘(𝑂𝑋))) = (𝐺𝑋))
5149, 50oveq12d 7405 . . . . 5 (𝜑 → ((𝐴o (𝑂‘(𝑂𝑋))) ·o (𝐺‘(𝑂‘(𝑂𝑋)))) = ((𝐴o 𝑋) ·o (𝐺𝑋)))
5251oveq1d 7402 . . . 4 (𝜑 → (((𝐴o (𝑂‘(𝑂𝑋))) ·o (𝐺‘(𝑂‘(𝑂𝑋)))) +o (𝐻‘(𝑂𝑋))) = (((𝐴o 𝑋) ·o (𝐺𝑋)) +o (𝐻‘(𝑂𝑋))))
5346, 52eqtrd 2764 . . 3 (𝜑 → (𝐻‘suc (𝑂𝑋)) = (((𝐴o 𝑋) ·o (𝐺𝑋)) +o (𝐻‘(𝑂𝑋))))
5444, 53sseqtrrd 3984 . 2 (𝜑 → ((𝐴o 𝑋) ·o (𝐺𝑋)) ⊆ (𝐻‘suc (𝑂𝑋)))
55 onss 7761 . . . . . . . . . . 11 (𝐵 ∈ On → 𝐵 ⊆ On)
562, 55syl 17 . . . . . . . . . 10 (𝜑𝐵 ⊆ On)
5756sselda 3946 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑥 ∈ On)
5812adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑋 ∈ On)
59 onsseleq 6373 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
6057, 58, 59syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑥𝑋 ↔ (𝑥𝑋𝑥 = 𝑋)))
61 orcom 870 . . . . . . . 8 ((𝑥𝑋𝑥 = 𝑋) ↔ (𝑥 = 𝑋𝑥𝑋))
6260, 61bitrdi 287 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥𝑋 ↔ (𝑥 = 𝑋𝑥𝑋)))
6362ifbid 4512 . . . . . 6 ((𝜑𝑥𝐵) → if(𝑥𝑋, (𝐹𝑥), ∅) = if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅))
6463mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅)))
6564fveq2d 6862 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅))))
663, 1, 2cantnfs 9619 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐵𝐴𝐹 finSupp ∅)))
675, 66mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐹:𝐵𝐴𝐹 finSupp ∅))
6867simpld 494 . . . . . . . . . 10 (𝜑𝐹:𝐵𝐴)
6968ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑦𝐵) → (𝐹𝑦) ∈ 𝐴)
7018ne0d 4305 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
71 on0eln0 6389 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
721, 71syl 17 . . . . . . . . . . 11 (𝜑 → (∅ ∈ 𝐴𝐴 ≠ ∅))
7370, 72mpbird 257 . . . . . . . . . 10 (𝜑 → ∅ ∈ 𝐴)
7473adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → ∅ ∈ 𝐴)
7569, 74ifcld 4535 . . . . . . . 8 ((𝜑𝑦𝐵) → if(𝑦𝑋, (𝐹𝑦), ∅) ∈ 𝐴)
7675fmpttd 7087 . . . . . . 7 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)):𝐵𝐴)
77 0ex 5262 . . . . . . . . 9 ∅ ∈ V
7877a1i 11 . . . . . . . 8 (𝜑 → ∅ ∈ V)
7967simprd 495 . . . . . . . 8 (𝜑𝐹 finSupp ∅)
8068, 2, 78, 79fsuppmptif 9350 . . . . . . 7 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) finSupp ∅)
813, 1, 2cantnfs 9619 . . . . . . 7 (𝜑 → ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) ∈ 𝑆 ↔ ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)):𝐵𝐴 ∧ (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) finSupp ∅)))
8276, 80, 81mpbir2and 713 . . . . . 6 (𝜑 → (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) ∈ 𝑆)
8368, 10ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ 𝐴)
84 eldifn 4095 . . . . . . . . 9 (𝑦 ∈ (𝐵𝑋) → ¬ 𝑦𝑋)
8584adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐵𝑋)) → ¬ 𝑦𝑋)
8685iffalsed 4499 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵𝑋)) → if(𝑦𝑋, (𝐹𝑦), ∅) = ∅)
8786, 2suppss2 8179 . . . . . 6 (𝜑 → ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) supp ∅) ⊆ 𝑋)
88 ifor 4543 . . . . . . . 8 if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅) = if(𝑥 = 𝑋, (𝐹𝑥), if(𝑥𝑋, (𝐹𝑥), ∅))
89 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
9089adantl 481 . . . . . . . . . 10 ((𝑥𝐵𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
9190ifeq1da 4520 . . . . . . . . 9 (𝑥𝐵 → if(𝑥 = 𝑋, (𝐹𝑥), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹𝑋), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)))
92 eleq1w 2811 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝑋𝑥𝑋))
93 fveq2 6858 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
9492, 93ifbieq1d 4513 . . . . . . . . . . 11 (𝑦 = 𝑥 → if(𝑦𝑋, (𝐹𝑦), ∅) = if(𝑥𝑋, (𝐹𝑥), ∅))
95 eqid 2729 . . . . . . . . . . 11 (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)) = (𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))
96 fvex 6871 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
9796, 77ifex 4539 . . . . . . . . . . 11 if(𝑥𝑋, (𝐹𝑥), ∅) ∈ V
9894, 95, 97fvmpt 6968 . . . . . . . . . 10 (𝑥𝐵 → ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥) = if(𝑥𝑋, (𝐹𝑥), ∅))
9998ifeq2d 4509 . . . . . . . . 9 (𝑥𝐵 → if(𝑥 = 𝑋, (𝐹𝑥), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹𝑥), if(𝑥𝑋, (𝐹𝑥), ∅)))
10091, 99eqtr3d 2766 . . . . . . . 8 (𝑥𝐵 → if(𝑥 = 𝑋, (𝐹𝑋), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)) = if(𝑥 = 𝑋, (𝐹𝑥), if(𝑥𝑋, (𝐹𝑥), ∅)))
10188, 100eqtr4id 2783 . . . . . . 7 (𝑥𝐵 → if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅) = if(𝑥 = 𝑋, (𝐹𝑋), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)))
102101mpteq2ia 5202 . . . . . 6 (𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅)) = (𝑥𝐵 ↦ if(𝑥 = 𝑋, (𝐹𝑋), ((𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))‘𝑥)))
1033, 1, 2, 82, 10, 83, 87, 102cantnfp1 9634 . . . . 5 (𝜑 → ((𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅))) = (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))))))
104103simprd 495 . . . 4 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if((𝑥 = 𝑋𝑥𝑋), (𝐹𝑥), ∅))) = (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))))
10565, 104eqtrd 2764 . . 3 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) = (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))))
106 onelon 6357 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐹𝑋) ∈ 𝐴) → (𝐹𝑋) ∈ On)
1071, 83, 106syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝑋) ∈ On)
108 omsuc 8490 . . . . . 6 (((𝐴o 𝑋) ∈ On ∧ (𝐹𝑋) ∈ On) → ((𝐴o 𝑋) ·o suc (𝐹𝑋)) = (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋)))
10914, 107, 108syl2anc 584 . . . . 5 (𝜑 → ((𝐴o 𝑋) ·o suc (𝐹𝑋)) = (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋)))
110 eloni 6342 . . . . . . . 8 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
11120, 110syl 17 . . . . . . 7 (𝜑 → Ord (𝐺𝑋))
1129simp2d 1143 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ (𝐺𝑋))
113 ordsucss 7793 . . . . . . 7 (Ord (𝐺𝑋) → ((𝐹𝑋) ∈ (𝐺𝑋) → suc (𝐹𝑋) ⊆ (𝐺𝑋)))
114111, 112, 113sylc 65 . . . . . 6 (𝜑 → suc (𝐹𝑋) ⊆ (𝐺𝑋))
115 onsuc 7787 . . . . . . . 8 ((𝐹𝑋) ∈ On → suc (𝐹𝑋) ∈ On)
116107, 115syl 17 . . . . . . 7 (𝜑 → suc (𝐹𝑋) ∈ On)
117 omwordi 8535 . . . . . . 7 ((suc (𝐹𝑋) ∈ On ∧ (𝐺𝑋) ∈ On ∧ (𝐴o 𝑋) ∈ On) → (suc (𝐹𝑋) ⊆ (𝐺𝑋) → ((𝐴o 𝑋) ·o suc (𝐹𝑋)) ⊆ ((𝐴o 𝑋) ·o (𝐺𝑋))))
118116, 20, 14, 117syl3anc 1373 . . . . . 6 (𝜑 → (suc (𝐹𝑋) ⊆ (𝐺𝑋) → ((𝐴o 𝑋) ·o suc (𝐹𝑋)) ⊆ ((𝐴o 𝑋) ·o (𝐺𝑋))))
119114, 118mpd 15 . . . . 5 (𝜑 → ((𝐴o 𝑋) ·o suc (𝐹𝑋)) ⊆ ((𝐴o 𝑋) ·o (𝐺𝑋)))
120109, 119eqsstrrd 3982 . . . 4 (𝜑 → (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋)) ⊆ ((𝐴o 𝑋) ·o (𝐺𝑋)))
1213, 1, 2, 82, 73, 12, 87cantnflt2 9626 . . . . 5 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ (𝐴o 𝑋))
122 onelon 6357 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ (𝐴o 𝑋)) → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ On)
12314, 121, 122syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ On)
124 omcl 8500 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ (𝐹𝑋) ∈ On) → ((𝐴o 𝑋) ·o (𝐹𝑋)) ∈ On)
12514, 107, 124syl2anc 584 . . . . . 6 (𝜑 → ((𝐴o 𝑋) ·o (𝐹𝑋)) ∈ On)
126 oaord 8511 . . . . . 6 ((((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ On ∧ (𝐴o 𝑋) ∈ On ∧ ((𝐴o 𝑋) ·o (𝐹𝑋)) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ (𝐴o 𝑋) ↔ (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))) ∈ (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋))))
127123, 14, 125, 126syl3anc 1373 . . . . 5 (𝜑 → (((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅))) ∈ (𝐴o 𝑋) ↔ (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))) ∈ (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋))))
128121, 127mpbid 232 . . . 4 (𝜑 → (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))) ∈ (((𝐴o 𝑋) ·o (𝐹𝑋)) +o (𝐴o 𝑋)))
129120, 128sseldd 3947 . . 3 (𝜑 → (((𝐴o 𝑋) ·o (𝐹𝑋)) +o ((𝐴 CNF 𝐵)‘(𝑦𝐵 ↦ if(𝑦𝑋, (𝐹𝑦), ∅)))) ∈ ((𝐴o 𝑋) ·o (𝐺𝑋)))
130105, 129eqeltrd 2828 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) ∈ ((𝐴o 𝑋) ·o (𝐺𝑋)))
13154, 130sseldd 3947 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥𝐵 ↦ if(𝑥𝑋, (𝐹𝑥), ∅))) ∈ (𝐻‘suc (𝑂𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  c0 4296  ifcif 4488   cuni 4871   class class class wbr 5107  {copab 5169  cmpt 5188   E cep 5537   We wwe 5590  ccnv 5637  dom cdm 5638  Ord word 6331  Oncon0 6332  suc csuc 6334  wf 6507  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512  (class class class)co 7387  cmpo 7389  ωcom 7842   supp csupp 8139  seqωcseqom 8415   +o coa 8431   ·o comu 8432  o coe 8433   finSupp cfsupp 9312  OrdIsocoi 9462   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-cnf 9615
This theorem is referenced by:  cantnflem1  9642
  Copyright terms: Public domain W3C validator