| Step | Hyp | Ref
| Expression |
| 1 | | ovex 7443 |
. . . . . 6
⊢ (𝐺 supp ∅) ∈
V |
| 2 | | cantnflem1.o |
. . . . . . 7
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
| 3 | 2 | oion 9555 |
. . . . . 6
⊢ ((𝐺 supp ∅) ∈ V →
dom 𝑂 ∈
On) |
| 4 | 1, 3 | mp1i 13 |
. . . . 5
⊢ (𝜑 → dom 𝑂 ∈ On) |
| 5 | | uniexg 7739 |
. . . . 5
⊢ (dom
𝑂 ∈ On → ∪ dom 𝑂 ∈ V) |
| 6 | | sucidg 6440 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
| 7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
| 8 | | cantnfs.s |
. . . . . . . . . 10
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 9 | | cantnfs.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ On) |
| 10 | | cantnfs.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ On) |
| 11 | | oemapval.t |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| 12 | | oemapval.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| 13 | | oemapval.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
| 14 | | oemapvali.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹𝑇𝐺) |
| 15 | | oemapvali.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | cantnflem1a 9704 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
| 17 | | n0i 4320 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐺 supp ∅) → ¬ (𝐺 supp ∅) =
∅) |
| 18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝐺 supp ∅) = ∅) |
| 19 | | ovexd 7445 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ∈ V) |
| 20 | 8, 9, 10, 2, 13 | cantnfcl 9686 |
. . . . . . . . . . 11
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω)) |
| 21 | 20 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → E We (𝐺 supp ∅)) |
| 22 | 2 | oien 9557 |
. . . . . . . . . 10
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
dom 𝑂 ≈ (𝐺 supp ∅)) |
| 23 | 19, 21, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑂 ≈ (𝐺 supp ∅)) |
| 24 | | breq1 5127 |
. . . . . . . . . 10
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ ∅
≈ (𝐺 supp
∅))) |
| 25 | | ensymb 9021 |
. . . . . . . . . . 11
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅)
≈ ∅) |
| 26 | | en0 9037 |
. . . . . . . . . . 11
⊢ ((𝐺 supp ∅) ≈ ∅
↔ (𝐺 supp ∅) =
∅) |
| 27 | 25, 26 | bitri 275 |
. . . . . . . . . 10
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅) =
∅) |
| 28 | 24, 27 | bitrdi 287 |
. . . . . . . . 9
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) =
∅)) |
| 29 | 23, 28 | syl5ibcom 245 |
. . . . . . . 8
⊢ (𝜑 → (dom 𝑂 = ∅ → (𝐺 supp ∅) = ∅)) |
| 30 | 18, 29 | mtod 198 |
. . . . . . 7
⊢ (𝜑 → ¬ dom 𝑂 = ∅) |
| 31 | 20 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑂 ∈ ω) |
| 32 | | nnlim 7880 |
. . . . . . . 8
⊢ (dom
𝑂 ∈ ω →
¬ Lim dom 𝑂) |
| 33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ¬ Lim dom 𝑂) |
| 34 | | ioran 985 |
. . . . . . 7
⊢ (¬
(dom 𝑂 = ∅ ∨ Lim
dom 𝑂) ↔ (¬ dom
𝑂 = ∅ ∧ ¬ Lim
dom 𝑂)) |
| 35 | 30, 33, 34 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)) |
| 36 | 2 | oicl 9548 |
. . . . . . 7
⊢ Ord dom
𝑂 |
| 37 | | unizlim 6482 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
| 38 | 36, 37 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
| 39 | 35, 38 | mtbird 325 |
. . . . 5
⊢ (𝜑 → ¬ dom 𝑂 = ∪
dom 𝑂) |
| 40 | | orduniorsuc 7829 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂)) |
| 41 | 36, 40 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom
𝑂)) |
| 42 | 41 | ord 864 |
. . . . 5
⊢ (𝜑 → (¬ dom 𝑂 = ∪
dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂)) |
| 43 | 39, 42 | mpd 15 |
. . . 4
⊢ (𝜑 → dom 𝑂 = suc ∪ dom
𝑂) |
| 44 | 7, 43 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → ∪ dom 𝑂 ∈ dom 𝑂) |
| 45 | 2 | oiiso 9556 |
. . . . . . . 8
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
| 46 | 19, 21, 45 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
| 47 | | isof1o 7321 |
. . . . . . 7
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
| 48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
| 49 | | f1ocnv 6835 |
. . . . . 6
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) → ◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂) |
| 50 | | f1of 6823 |
. . . . . 6
⊢ (◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
| 51 | 48, 49, 50 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
| 52 | 51, 16 | ffvelcdmd 7080 |
. . . 4
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
| 53 | | elssuni 4918 |
. . . 4
⊢ ((◡𝑂‘𝑋) ∈ dom 𝑂 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
| 54 | 52, 53 | syl 17 |
. . 3
⊢ (𝜑 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
| 55 | 43, 31 | eqeltrrd 2836 |
. . . . 5
⊢ (𝜑 → suc ∪ dom 𝑂 ∈ ω) |
| 56 | | peano2b 7883 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω) |
| 57 | 55, 56 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ ω) |
| 58 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝑦 ∈ dom 𝑂 ↔ ∪ dom
𝑂 ∈ dom 𝑂)) |
| 59 | | sseq2 3990 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂)) |
| 60 | 58, 59 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂))) |
| 61 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∪
dom 𝑂 → (𝑂‘𝑦) = (𝑂‘∪ dom
𝑂)) |
| 62 | 61 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
| 63 | 62 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
dom 𝑂 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
| 64 | 63 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
| 65 | 64 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
| 66 | | suceq 6424 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂) |
| 67 | 66 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝐻‘suc 𝑦) = (𝐻‘suc ∪ dom
𝑂)) |
| 68 | 65, 67 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
| 69 | 60, 68 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = ∪
dom 𝑂 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
| 70 | 69 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = ∪
dom 𝑂 → ((𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦))) ↔ (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))))) |
| 71 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂)) |
| 72 | | sseq2 3990 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∅)) |
| 73 | 71, 72 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅))) |
| 74 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑂‘𝑦) = (𝑂‘∅)) |
| 75 | 74 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∅))) |
| 76 | 75 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
| 77 | 76 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
| 78 | 77 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
| 79 | | suceq 6424 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
| 80 | 79 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐻‘suc 𝑦) = (𝐻‘suc ∅)) |
| 81 | 78, 80 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑦 = ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
| 82 | 73, 81 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = ∅ → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅)))) |
| 83 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂)) |
| 84 | | sseq2 3990 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ 𝑢)) |
| 85 | 83, 84 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢))) |
| 86 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑂‘𝑦) = (𝑂‘𝑢)) |
| 87 | 86 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘𝑢))) |
| 88 | 87 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
| 89 | 88 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
| 90 | 89 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) |
| 91 | | suceq 6424 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → suc 𝑦 = suc 𝑢) |
| 92 | 91 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc 𝑢)) |
| 93 | 90, 92 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢))) |
| 94 | 85, 93 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)))) |
| 95 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂)) |
| 96 | | sseq2 3990 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ suc 𝑢)) |
| 97 | 95, 96 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢))) |
| 98 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑢 → (𝑂‘𝑦) = (𝑂‘suc 𝑢)) |
| 99 | 98 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝑦 = suc 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
| 100 | 99 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
| 101 | 100 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
| 102 | 101 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
| 103 | | suceq 6424 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢) |
| 104 | 103 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc suc 𝑢)) |
| 105 | 102, 104 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 106 | 97, 105 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = suc 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 107 | | f1ocnvfv2 7275 |
. . . . . . . . . . . . 13
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
| 108 | 48, 16, 107 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
| 109 | 108 | sseq2d 3996 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ 𝑋)) |
| 110 | 109 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)) |
| 111 | 110 | mpteq2dv 5220 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) |
| 112 | 111 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)))) |
| 113 | | cantnflem1.h |
. . . . . . . . 9
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐺‘(𝑂‘𝑘))) +o 𝑧)), ∅) |
| 114 | 8, 9, 10, 11, 12, 13, 14, 15, 2, 113 | cantnflem1d 9707 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
| 115 | 112, 114 | eqeltrd 2835 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
| 116 | | ss0 4382 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (◡𝑂‘𝑋) = ∅) |
| 117 | 116 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘∅)) |
| 118 | 117 | sseq2d 3996 |
. . . . . . . . . . . 12
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘∅))) |
| 119 | 118 | ifbid 4529 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
| 120 | 119 | mpteq2dv 5220 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
| 121 | 120 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
| 122 | | suceq 6424 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) = ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
| 123 | 116, 122 | syl 17 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
| 124 | 123 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc ∅)) |
| 125 | 121, 124 | eleq12d 2829 |
. . . . . . . 8
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
| 126 | 125 | adantl 481 |
. . . . . . 7
⊢ ((∅
∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
| 127 | 115, 126 | syl5ibcom 245 |
. . . . . 6
⊢ (𝜑 → ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
| 128 | | ordelon 6381 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
| 129 | 36, 52, 128 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ On) |
| 130 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord dom 𝑂) |
| 131 | | ordelon 6381 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
| 132 | 130, 131 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
| 133 | | onsseleq 6398 |
. . . . . . . . . . 11
⊢ (((◡𝑂‘𝑋) ∈ On ∧ suc 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
| 134 | 129, 132,
133 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
| 135 | | onsucb 7816 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ On ↔ suc 𝑢 ∈ On) |
| 136 | 132, 135 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On) |
| 137 | | eloni 6367 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ On → Ord 𝑢) |
| 138 | 136, 137 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → Ord 𝑢) |
| 139 | | ordsssuc 6448 |
. . . . . . . . . . . . 13
⊢ (((◡𝑂‘𝑋) ∈ On ∧ Ord 𝑢) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
| 140 | 129, 138,
139 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
| 141 | | ordtr 6371 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord dom
𝑂 → Tr dom 𝑂) |
| 142 | 36, 141 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Tr dom 𝑂) |
| 143 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂) |
| 144 | | trsuc 6446 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂) |
| 145 | 142, 143,
144 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂) |
| 146 | | simprr 772 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ⊆ 𝑢) |
| 147 | 145, 146 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) |
| 148 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐵 ∈ On) |
| 149 | | oecl 8554 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
| 150 | 9, 148, 149 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑o 𝐵) ∈ On) |
| 151 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐴 ∈ On) |
| 152 | 8, 151, 148 | cantnff 9693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
| 153 | 8, 9, 10 | cantnfs 9685 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
| 154 | 12, 153 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
| 155 | 154 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
| 156 | 155 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ 𝐴) |
| 157 | 8, 9, 10 | cantnfs 9685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
| 158 | 13, 157 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
| 159 | 158 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 160 | 8, 9, 10, 11, 12, 13, 14, 15 | oemapvali 9703 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
| 161 | 160 | simp1d 1142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 162 | 159, 161 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) |
| 163 | 162 | ne0d 4322 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 164 | | on0eln0 6414 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 165 | 9, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 166 | 163, 165 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 167 | 166 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝐴) |
| 168 | 156, 167 | ifcld 4552 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ 𝐴) |
| 169 | 168 | fmpttd 7110 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴) |
| 170 | 10 | mptexd 7221 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V) |
| 171 | | funmpt 6579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun
(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
| 172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
| 173 | 154 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 finSupp ∅) |
| 174 | | ssidd 3987 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅)) |
| 175 | | 0ex 5282 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ V |
| 176 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∅ ∈
V) |
| 177 | 155, 174,
10, 176 | suppssr 8199 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹‘𝑥) = ∅) |
| 178 | 177 | ifeq1d 4525 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
| 179 | | ifid 4546 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅) =
∅ |
| 180 | 178, 179 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
| 181 | 180, 10 | suppss2 8204 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅)) |
| 182 | | fsuppsssupp 9398 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V ∧ Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∧ (𝐹 finSupp ∅ ∧ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅))) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
| 183 | 170, 172,
173, 181, 182 | syl22anc 838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
| 184 | 8, 9, 10 | cantnfs 9685 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆 ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴 ∧ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅))) |
| 185 | 169, 183,
184 | mpbir2and 713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
| 186 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
| 187 | 152, 186 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑o 𝐵)) |
| 188 | | onelon 6382 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑o 𝐵)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
| 189 | 150, 187,
188 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
| 190 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → dom 𝑂 ∈ ω) |
| 191 | | elnn 7877 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((suc
𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → suc 𝑢 ∈
ω) |
| 192 | 143, 190,
191 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ ω) |
| 193 | 113 | cantnfvalf 9684 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻:ω⟶On |
| 194 | 193 | ffvelcdmi 7078 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑢 ∈ ω →
(𝐻‘suc 𝑢) ∈ On) |
| 195 | 192, 194 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc 𝑢) ∈ On) |
| 196 | | suppssdm 8181 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
| 197 | 196, 159 | fssdm 6730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
| 198 | 197 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵) |
| 199 | 2 | oif 9549 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑂:dom 𝑂⟶(𝐺 supp ∅) |
| 200 | 199 | ffvelcdmi 7078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc
𝑢 ∈ dom 𝑂 → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
| 201 | 143, 200 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
| 202 | 198, 201 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ 𝐵) |
| 203 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ On ∧ (𝑂‘suc 𝑢) ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
| 204 | 10, 202, 203 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ On) |
| 205 | | oecl 8554 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On) |
| 206 | 9, 204, 205 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On) |
| 207 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐹:𝐵⟶𝐴) |
| 208 | 207, 202 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) |
| 209 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
| 210 | 9, 208, 209 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
| 211 | | omcl 8553 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ On) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
| 212 | 206, 210,
211 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
| 213 | | oaord 8564 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On ∧ (𝐻‘suc 𝑢) ∈ On ∧ ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
| 214 | 189, 195,
212, 213 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
| 215 | | ifeq1 4509 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅)) |
| 216 | | ifid 4546 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅) =
∅ |
| 217 | 215, 216 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = ∅) |
| 218 | | ifeq1 4509 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅)) |
| 219 | | ifid 4546 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅) =
∅ |
| 220 | 218, 219 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = ∅) |
| 221 | 217, 220 | eqeq12d 2752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑥) = ∅ → (if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) ↔ ∅ =
∅)) |
| 222 | | onss 7784 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 223 | 10, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ⊆ On) |
| 224 | 223 | sselda 3963 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
| 225 | 224 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
| 226 | 204 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
| 227 | | onsseleq 6398 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
| 228 | 225, 226,
227 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
| 229 | 228 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
| 230 | 199 | ffvelcdmi 7078 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ dom 𝑂 → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
| 231 | 145, 230 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
| 232 | 198, 231 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ 𝐵) |
| 233 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐵 ∈ On ∧ (𝑂‘𝑢) ∈ 𝐵) → (𝑂‘𝑢) ∈ On) |
| 234 | 10, 232, 233 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ On) |
| 235 | 234 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑂‘𝑢) ∈ On) |
| 236 | | onsssuc 6449 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
| 237 | 225, 235,
236 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
| 238 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑢 ∈ V |
| 239 | 238 | sucid 6441 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑢 ∈ suc 𝑢 |
| 240 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
| 241 | | isorel 7324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
| 242 | 240, 145,
143, 241 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
| 243 | 238 | sucex 7805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ suc 𝑢 ∈ V |
| 244 | 243 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢) |
| 245 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑂‘suc 𝑢) ∈ V |
| 246 | 245 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘𝑢) E (𝑂‘suc 𝑢) ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
| 247 | 242, 244,
246 | 3bitr3g 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ suc 𝑢 ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢))) |
| 248 | 239, 247 | mpbii 233 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
| 249 | | eloni 6367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘suc 𝑢) ∈ On → Ord (𝑂‘suc 𝑢)) |
| 250 | 204, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Ord (𝑂‘suc 𝑢)) |
| 251 | | ordelsuc 7819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑂‘𝑢) ∈ On ∧ Ord (𝑂‘suc 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
| 252 | 234, 250,
251 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
| 253 | 248, 252 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
| 254 | 253 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
| 255 | 254 | sseld 3962 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ suc (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 256 | 237, 255 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 257 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ 𝑥) |
| 258 | 240 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
| 259 | 258, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
| 260 | 8, 9, 10, 11, 12, 13, 14, 15, 2 | cantnflem1c 9706 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅)) |
| 261 | | f1ocnvfv2 7275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
| 262 | 259, 260,
261 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
| 263 | 257, 262 | eleqtrrd 2838 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
| 264 | 145 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ dom 𝑂) |
| 265 | 259, 49, 50 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
| 266 | 265, 260 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
| 267 | | isorel 7324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
| 268 | 258, 264,
266, 267 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
| 269 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (◡𝑂‘𝑥) ∈ V |
| 270 | 269 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑢 E (◡𝑂‘𝑥) ↔ 𝑢 ∈ (◡𝑂‘𝑥)) |
| 271 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑂‘(◡𝑂‘𝑥)) ∈ V |
| 272 | 271 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
| 273 | 268, 270,
272 | 3bitr3g 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
| 274 | 263, 273 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ (◡𝑂‘𝑥)) |
| 275 | | ordelon 6381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂) → (◡𝑂‘𝑥) ∈ On) |
| 276 | 36, 266, 275 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ On) |
| 277 | | eloni 6367 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((◡𝑂‘𝑥) ∈ On → Ord (◡𝑂‘𝑥)) |
| 278 | 276, 277 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → Ord (◡𝑂‘𝑥)) |
| 279 | | ordelsuc 7819 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑢 ∈ (◡𝑂‘𝑥) ∧ Ord (◡𝑂‘𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
| 280 | 274, 278,
279 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
| 281 | 274, 280 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ⊆ (◡𝑂‘𝑥)) |
| 282 | 143 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ dom 𝑂) |
| 283 | 36, 282, 131 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ On) |
| 284 | | ontri1 6391 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((suc
𝑢 ∈ On ∧ (◡𝑂‘𝑥) ∈ On) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
| 285 | 283, 276,
284 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
| 286 | 281, 285 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ (◡𝑂‘𝑥) ∈ suc 𝑢) |
| 287 | | isorel 7324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑥) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
| 288 | 258, 266,
282, 287 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
| 289 | 243 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑂‘𝑥) E suc 𝑢 ↔ (◡𝑂‘𝑥) ∈ suc 𝑢) |
| 290 | 245 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢)) |
| 291 | 288, 289,
290 | 3bitr3g 313 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢))) |
| 292 | 262 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 293 | 291, 292 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 294 | 286, 293 | mtbid 324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝑂‘suc 𝑢)) |
| 295 | 294 | expr 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑂‘𝑢) ∈ 𝑥 → ¬ 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 296 | 295 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → ¬ (𝑂‘𝑢) ∈ 𝑥)) |
| 297 | | ontri1 6391 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
| 298 | 225, 235,
297 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
| 299 | 296, 298 | sylibrd 259 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → 𝑥 ⊆ (𝑂‘𝑢))) |
| 300 | 256, 299 | impbid 212 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 301 | 300 | orbi1d 916 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
| 302 | 229, 301 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
| 303 | | orcom 870 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢))) |
| 304 | 302, 303 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)))) |
| 305 | 304 | ifbid 4529 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
| 306 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ∅ = ∅) |
| 307 | 221, 305,
306 | pm2.61ne 3018 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
| 308 | 307 | mpteq2dva 5219 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) |
| 309 | 308 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)))) |
| 310 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑥) ∈ V |
| 311 | 310, 175 | ifex 4556 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V |
| 312 | 311 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
| 313 | 312 | ralrimivw 3137 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑥 ∈ 𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
| 314 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
| 315 | 314 | fnmpt 6683 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑥 ∈
𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
| 316 | 313, 315 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
| 317 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∅ ∈ V) |
| 318 | | suppvalfn 8172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅}) |
| 319 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦𝐵 |
| 320 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥𝐵 |
| 321 | | nffvmpt1 6892 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) |
| 322 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥∅ |
| 323 | 321, 322 | nfne 3034 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ |
| 324 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ |
| 325 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥)) |
| 326 | 325 | neeq1d 2992 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅)) |
| 327 | 319, 320,
323, 324, 326 | cbvrabw 3457 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} |
| 328 | 318, 327 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
| 329 | 316, 148,
317, 328 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
| 330 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
| 331 | 311 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
| 332 | 330, 331 | fvmpt2d 7004 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
| 333 | 332 | neeq1d 2992 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
| 334 | 331 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅))) |
| 335 | | dif1o 8517 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
| 336 | 334, 335 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o))) |
| 337 | 333, 336 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o))) |
| 338 | 337 | rabbidva 3427 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o)}) |
| 339 | 329, 338 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o)}) |
| 340 | 311, 335 | mpbiran 709 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅) |
| 341 | | ifeq1 4509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
| 342 | 341, 179 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
| 343 | 342 | necon3i 2965 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → (𝐹‘𝑥) ≠ ∅) |
| 344 | | iffalse 4514 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑥 ⊆ (𝑂‘𝑢) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
| 345 | 344 | necon1ai 2960 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ⊆ (𝑂‘𝑢)) |
| 346 | 343, 345 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → ((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢))) |
| 347 | 256 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢)) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 348 | 346, 347 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 349 | 340, 348 | biimtrid 242 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
→ 𝑥 ∈ (𝑂‘suc 𝑢))) |
| 350 | 349 | 3impia 1117 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵 ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o))
→ 𝑥 ∈ (𝑂‘suc 𝑢)) |
| 351 | 350 | rabssdv 4055 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)}
⊆ (𝑂‘suc 𝑢)) |
| 352 | 339, 351 | eqsstrd 3998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝑂‘suc 𝑢)) |
| 353 | | eqeq1 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 = (𝑂‘suc 𝑢) ↔ 𝑦 = (𝑂‘suc 𝑢))) |
| 354 | | sseq1 3989 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑦 ⊆ (𝑂‘𝑢))) |
| 355 | 353, 354 | orbi12d 918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → ((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)) ↔ (𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)))) |
| 356 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 357 | 355, 356 | ifbieq1d 4530 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
| 358 | 357 | cbvmptv 5230 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
| 359 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = (𝑂‘suc 𝑢) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
| 360 | 359 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 = (𝑂‘suc 𝑢)) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
| 361 | 360 | ifeq1da 4537 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
| 362 | 354, 356 | ifbieq1d 4530 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
| 363 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑦) ∈ V |
| 364 | 363, 175 | ifex 4556 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅) ∈ V |
| 365 | 362, 314,
364 | fvmpt 6991 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
| 366 | 365 | ifeq2d 4526 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅))) |
| 367 | | ifor 4560 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
| 368 | 366, 367 | eqtr4di 2789 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
| 369 | 361, 368 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
| 370 | 369 | mpteq2ia 5221 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
| 371 | 358, 370 | eqtr4i 2762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
| 372 | 8, 151, 148, 186, 202, 208, 352, 371 | cantnfp1 9700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))))) |
| 373 | 372 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
| 374 | 309, 373 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
| 375 | 8, 9, 10, 2, 13, 113 | cantnfsuc 9689 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑢 ∈ ω) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
| 376 | 192, 375 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
| 377 | 160 | simp3d 1144 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
| 378 | 377 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
| 379 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
| 380 | 136 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ On) |
| 381 | | onsssuc 6449 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((◡𝑂‘𝑋) ∈ On ∧ 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
| 382 | 129, 380,
381 | syl2an2r 685 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
| 383 | 146, 382 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ suc 𝑢) |
| 384 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ dom 𝑂) |
| 385 | | isorel 7324 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑋) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
| 386 | 240, 384,
143, 385 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
| 387 | 243 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡𝑂‘𝑋) E suc 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢) |
| 388 | 245 | epeli 5560 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
| 389 | 386, 387,
388 | 3bitr3g 313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢))) |
| 390 | 383, 389 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
| 391 | 379, 390 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ∈ (𝑂‘suc 𝑢)) |
| 392 | | eleq2 2824 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ (𝑂‘suc 𝑢))) |
| 393 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐹‘𝑤) = (𝐹‘(𝑂‘suc 𝑢))) |
| 394 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐺‘𝑤) = (𝐺‘(𝑂‘suc 𝑢))) |
| 395 | 393, 394 | eqeq12d 2752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))) |
| 396 | 392, 395 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
| 397 | 396 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘suc 𝑢) ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
| 398 | 202, 378,
391, 397 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))) |
| 399 | 398 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) = ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢)))) |
| 400 | 399 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
| 401 | 376, 400 | eqtr4d 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
| 402 | 374, 401 | eleq12d 2829 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
| 403 | 214, 402 | bitr4d 282 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 404 | 403 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 405 | 147, 404 | embantd 59 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 406 | 405 | expr 456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 407 | 140, 406 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ∈ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 408 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘suc 𝑢)) |
| 409 | 408 | sseq2d 3996 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
| 410 | 409 | ifbid 4529 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
| 411 | 410 | mpteq2dv 5220 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
| 412 | 411 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
| 413 | | suceq 6424 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → suc (◡𝑂‘𝑋) = suc suc 𝑢) |
| 414 | 413 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc suc 𝑢)) |
| 415 | 412, 414 | eleq12d 2829 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 416 | 115, 415 | syl5ibcom 245 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 417 | 416 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
| 418 | 417 | a1dd 50 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 419 | 407, 418 | jaod 859 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 420 | 134, 419 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 421 | 420 | expimpd 453 |
. . . . . . . 8
⊢ (𝜑 → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 422 | 421 | com23 86 |
. . . . . . 7
⊢ (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
| 423 | 422 | a1i 11 |
. . . . . 6
⊢ (𝑢 ∈ ω → (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))) |
| 424 | 82, 94, 106, 127, 423 | finds2 7899 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)))) |
| 425 | 70, 424 | vtoclga 3561 |
. . . 4
⊢ (∪ dom 𝑂 ∈ ω → (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
| 426 | 57, 425 | mpcom 38 |
. . 3
⊢ (𝜑 → ((∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
| 427 | 44, 54, 426 | mp2and 699 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)) |
| 428 | 155 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥))) |
| 429 | | eqeq2 2748 |
. . . . . 6
⊢ ((𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
| 430 | | eqeq2 2748 |
. . . . . 6
⊢ (∅
= if(𝑥 ⊆ (𝑂‘∪ dom 𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = ∅ ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
| 431 | | eqidd 2737 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 432 | 199 | ffvelcdmi 7078 |
. . . . . . . . . . . . . 14
⊢ (∪ dom 𝑂 ∈ dom 𝑂 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
| 433 | 44, 432 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
| 434 | 197, 433 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ 𝐵) |
| 435 | | onelon 6382 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
| 436 | 10, 434, 435 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈
On) |
| 437 | 436 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
| 438 | | ontri1 6391 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
| 439 | 224, 437,
438 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
| 440 | 439 | con2bid 354 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
| 441 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ 𝐵) |
| 442 | 377 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
| 443 | | eloni 6367 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) ∈ On → Ord (◡𝑂‘𝑋)) |
| 444 | 129, 443 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord (◡𝑂‘𝑋)) |
| 445 | | orduni 7788 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord dom
𝑂 → Ord ∪ dom 𝑂) |
| 446 | 36, 445 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ Ord ∪ dom 𝑂 |
| 447 | | ordtri1 6390 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
(◡𝑂‘𝑋) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
| 448 | 444, 446,
447 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
| 449 | 54, 448 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋)) |
| 450 | | isorel 7324 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
| 451 | 46, 44, 52, 450 | syl12anc 836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
| 452 | | fvex 6894 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑂‘𝑋) ∈ V |
| 453 | 452 | epeli 5560 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑋)) |
| 454 | | fvex 6894 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑂‘(◡𝑂‘𝑋)) ∈ V |
| 455 | 454 | epeli 5560 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋))) |
| 456 | 451, 453,
455 | 3bitr3g 313 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)))) |
| 457 | 108 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
| 458 | 456, 457 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
| 459 | 449, 458 | mtbid 324 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑂‘∪ dom
𝑂) ∈ 𝑋) |
| 460 | | onelon 6382 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
| 461 | 10, 161, 460 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ On) |
| 462 | | ontri1 6391 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
| 463 | 461, 436,
462 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
| 464 | 459, 463 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
| 465 | 464 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
| 466 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
| 467 | 224 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ On) |
| 468 | | ontr2 6405 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
| 469 | 461, 467,
468 | syl2an2r 685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
| 470 | 465, 466,
469 | mp2and 699 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ∈ 𝑥) |
| 471 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥)) |
| 472 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
| 473 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐺‘𝑤) = (𝐺‘𝑥)) |
| 474 | 472, 473 | eqeq12d 2752 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 475 | 471, 474 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 476 | 475 | rspcv 3602 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
| 477 | 441, 442,
470, 476 | syl3c 66 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 478 | 466 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
| 479 | 46 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
| 480 | 44 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ dom 𝑂) |
| 481 | 51 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
| 482 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂:(𝐺 supp ∅)⟶dom 𝑂 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
| 483 | 481, 482 | sylancom 588 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
| 484 | | isorel 7324 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
| 485 | 479, 480,
483, 484 | syl12anc 836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
| 486 | 269 | epeli 5560 |
. . . . . . . . . . . . . . . 16
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑥)) |
| 487 | 271 | epeli 5560 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥))) |
| 488 | 485, 486,
487 | 3bitr3g 313 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
| 489 | 48 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
| 490 | 489, 261 | sylancom 588 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
| 491 | 490 | eleq2d 2821 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
| 492 | 488, 491 | bitrd 279 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
| 493 | 478, 492 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
| 494 | | elssuni 4918 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑥) ∈ dom 𝑂 → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
| 495 | 483, 494 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
| 496 | 36, 483, 275 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ On) |
| 497 | 496, 277 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → Ord (◡𝑂‘𝑥)) |
| 498 | | ordtri1 6390 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
(◡𝑂‘𝑥) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
| 499 | 497, 446,
498 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
| 500 | 495, 499 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
| 501 | 493, 500 | pm2.65da 816 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝐺 supp ∅)) |
| 502 | 441, 501 | eldifd 3942 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
| 503 | | ssidd 3987 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
| 504 | 159, 503,
10, 176 | suppssr 8199 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑥) = ∅) |
| 505 | 502, 504 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐺‘𝑥) = ∅) |
| 506 | 477, 505 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = ∅) |
| 507 | 506 | expr 456 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 → (𝐹‘𝑥) = ∅)) |
| 508 | 440, 507 | sylbird 260 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂) → (𝐹‘𝑥) = ∅)) |
| 509 | 508 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = ∅) |
| 510 | 429, 430,
431, 509 | ifbothda 4544 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
| 511 | 510 | mpteq2dva 5219 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
| 512 | 428, 511 | eqtrd 2771 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
| 513 | 512 | fveq2d 6885 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
| 514 | 8, 9, 10, 2, 13, 113 | cantnfval 9687 |
. . 3
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘dom 𝑂)) |
| 515 | 43 | fveq2d 6885 |
. . 3
⊢ (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc ∪ dom
𝑂)) |
| 516 | 514, 515 | eqtrd 2771 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘suc ∪ dom
𝑂)) |
| 517 | 427, 513,
516 | 3eltr4d 2850 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺)) |