Step | Hyp | Ref
| Expression |
1 | | ovex 7288 |
. . . . . 6
⊢ (𝐺 supp ∅) ∈
V |
2 | | cantnflem1.o |
. . . . . . 7
⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) |
3 | 2 | oion 9225 |
. . . . . 6
⊢ ((𝐺 supp ∅) ∈ V →
dom 𝑂 ∈
On) |
4 | 1, 3 | mp1i 13 |
. . . . 5
⊢ (𝜑 → dom 𝑂 ∈ On) |
5 | | uniexg 7571 |
. . . . 5
⊢ (dom
𝑂 ∈ On → ∪ dom 𝑂 ∈ V) |
6 | | sucidg 6329 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ V → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ suc ∪ dom
𝑂) |
8 | | cantnfs.s |
. . . . . . . . . 10
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
9 | | cantnfs.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ On) |
10 | | cantnfs.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ On) |
11 | | oemapval.t |
. . . . . . . . . 10
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
12 | | oemapval.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
13 | | oemapval.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
14 | | oemapvali.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹𝑇𝐺) |
15 | | oemapvali.x |
. . . . . . . . . 10
⊢ 𝑋 = ∪
{𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | cantnflem1a 9373 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) |
17 | | n0i 4264 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐺 supp ∅) → ¬ (𝐺 supp ∅) =
∅) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ¬ (𝐺 supp ∅) = ∅) |
19 | | ovexd 7290 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 supp ∅) ∈ V) |
20 | 8, 9, 10, 2, 13 | cantnfcl 9355 |
. . . . . . . . . . 11
⊢ (𝜑 → ( E We (𝐺 supp ∅) ∧ dom 𝑂 ∈ ω)) |
21 | 20 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → E We (𝐺 supp ∅)) |
22 | 2 | oien 9227 |
. . . . . . . . . 10
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
dom 𝑂 ≈ (𝐺 supp ∅)) |
23 | 19, 21, 22 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑂 ≈ (𝐺 supp ∅)) |
24 | | breq1 5073 |
. . . . . . . . . 10
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ ∅
≈ (𝐺 supp
∅))) |
25 | | ensymb 8743 |
. . . . . . . . . . 11
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅)
≈ ∅) |
26 | | en0 8758 |
. . . . . . . . . . 11
⊢ ((𝐺 supp ∅) ≈ ∅
↔ (𝐺 supp ∅) =
∅) |
27 | 25, 26 | bitri 274 |
. . . . . . . . . 10
⊢ (∅
≈ (𝐺 supp ∅)
↔ (𝐺 supp ∅) =
∅) |
28 | 24, 27 | bitrdi 286 |
. . . . . . . . 9
⊢ (dom
𝑂 = ∅ → (dom
𝑂 ≈ (𝐺 supp ∅) ↔ (𝐺 supp ∅) =
∅)) |
29 | 23, 28 | syl5ibcom 244 |
. . . . . . . 8
⊢ (𝜑 → (dom 𝑂 = ∅ → (𝐺 supp ∅) = ∅)) |
30 | 18, 29 | mtod 197 |
. . . . . . 7
⊢ (𝜑 → ¬ dom 𝑂 = ∅) |
31 | 20 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑂 ∈ ω) |
32 | | nnlim 7701 |
. . . . . . . 8
⊢ (dom
𝑂 ∈ ω →
¬ Lim dom 𝑂) |
33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ¬ Lim dom 𝑂) |
34 | | ioran 980 |
. . . . . . 7
⊢ (¬
(dom 𝑂 = ∅ ∨ Lim
dom 𝑂) ↔ (¬ dom
𝑂 = ∅ ∧ ¬ Lim
dom 𝑂)) |
35 | 30, 33, 34 | sylanbrc 582 |
. . . . . 6
⊢ (𝜑 → ¬ (dom 𝑂 = ∅ ∨ Lim dom 𝑂)) |
36 | 2 | oicl 9218 |
. . . . . . 7
⊢ Ord dom
𝑂 |
37 | | unizlim 6368 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
38 | 36, 37 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ↔ (dom 𝑂 = ∅ ∨ Lim dom 𝑂))) |
39 | 35, 38 | mtbird 324 |
. . . . 5
⊢ (𝜑 → ¬ dom 𝑂 = ∪
dom 𝑂) |
40 | | orduniorsuc 7652 |
. . . . . . 7
⊢ (Ord dom
𝑂 → (dom 𝑂 = ∪
dom 𝑂 ∨ dom 𝑂 = suc ∪ dom 𝑂)) |
41 | 36, 40 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (dom 𝑂 = ∪ dom 𝑂 ∨ dom 𝑂 = suc ∪ dom
𝑂)) |
42 | 41 | ord 860 |
. . . . 5
⊢ (𝜑 → (¬ dom 𝑂 = ∪
dom 𝑂 → dom 𝑂 = suc ∪ dom 𝑂)) |
43 | 39, 42 | mpd 15 |
. . . 4
⊢ (𝜑 → dom 𝑂 = suc ∪ dom
𝑂) |
44 | 7, 43 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → ∪ dom 𝑂 ∈ dom 𝑂) |
45 | 2 | oiiso 9226 |
. . . . . . . 8
⊢ (((𝐺 supp ∅) ∈ V ∧ E
We (𝐺 supp ∅)) →
𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
46 | 19, 21, 45 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
47 | | isof1o 7174 |
. . . . . . 7
⊢ (𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
49 | | f1ocnv 6712 |
. . . . . 6
⊢ (𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) → ◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂) |
50 | | f1of 6700 |
. . . . . 6
⊢ (◡𝑂:(𝐺 supp ∅)–1-1-onto→dom
𝑂 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
51 | 48, 49, 50 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
52 | 51, 16 | ffvelrnd 6944 |
. . . 4
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ dom 𝑂) |
53 | | elssuni 4868 |
. . . 4
⊢ ((◡𝑂‘𝑋) ∈ dom 𝑂 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
54 | 52, 53 | syl 17 |
. . 3
⊢ (𝜑 → (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) |
55 | 43, 31 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → suc ∪ dom 𝑂 ∈ ω) |
56 | | peano2b 7704 |
. . . . 5
⊢ (∪ dom 𝑂 ∈ ω ↔ suc ∪ dom 𝑂 ∈ ω) |
57 | 55, 56 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ dom 𝑂 ∈ ω) |
58 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝑦 ∈ dom 𝑂 ↔ ∪ dom
𝑂 ∈ dom 𝑂)) |
59 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂)) |
60 | 58, 59 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂))) |
61 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∪
dom 𝑂 → (𝑂‘𝑦) = (𝑂‘∪ dom
𝑂)) |
62 | 61 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
63 | 62 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑦 = ∪
dom 𝑂 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
64 | 63 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
65 | 64 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
66 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑦 = ∪
dom 𝑂 → suc 𝑦 = suc ∪ dom 𝑂) |
67 | 66 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = ∪
dom 𝑂 → (𝐻‘suc 𝑦) = (𝐻‘suc ∪ dom
𝑂)) |
68 | 65, 67 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = ∪
dom 𝑂 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
69 | 60, 68 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = ∪
dom 𝑂 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
70 | 69 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = ∪
dom 𝑂 → ((𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦))) ↔ (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))))) |
71 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 ∈ dom 𝑂 ↔ ∅ ∈ dom 𝑂)) |
72 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ ∅)) |
73 | 71, 72 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = ∅ → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅))) |
74 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = ∅ → (𝑂‘𝑦) = (𝑂‘∅)) |
75 | 74 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘∅))) |
76 | 75 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
77 | 76 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
78 | 77 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
79 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → suc 𝑦 = suc ∅) |
80 | 79 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝐻‘suc 𝑦) = (𝐻‘suc ∅)) |
81 | 78, 80 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
82 | 73, 81 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = ∅ → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅)))) |
83 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝑦 ∈ dom 𝑂 ↔ 𝑢 ∈ dom 𝑂)) |
84 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ 𝑢)) |
85 | 83, 84 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢))) |
86 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑢 → (𝑂‘𝑦) = (𝑂‘𝑢)) |
87 | 86 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘𝑢))) |
88 | 87 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
89 | 88 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
90 | 89 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) |
91 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → suc 𝑦 = suc 𝑢) |
92 | 91 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc 𝑢)) |
93 | 90, 92 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢))) |
94 | 85, 93 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)))) |
95 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝑦 ∈ dom 𝑂 ↔ suc 𝑢 ∈ dom 𝑂)) |
96 | | sseq2 3943 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((◡𝑂‘𝑋) ⊆ 𝑦 ↔ (◡𝑂‘𝑋) ⊆ suc 𝑢)) |
97 | 95, 96 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) ↔ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢))) |
98 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑢 → (𝑂‘𝑦) = (𝑂‘suc 𝑢)) |
99 | 98 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝑦 = suc 𝑢 → (𝑥 ⊆ (𝑂‘𝑦) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
100 | 99 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑦 = suc 𝑢 → if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
101 | 100 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
102 | 101 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
103 | | suceq 6316 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑢 → suc 𝑦 = suc suc 𝑢) |
104 | 103 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑢 → (𝐻‘suc 𝑦) = (𝐻‘suc suc 𝑢)) |
105 | 102, 104 | eleq12d 2833 |
. . . . . . 7
⊢ (𝑦 = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
106 | 97, 105 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = suc 𝑢 → (((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)) ↔ ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
107 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . 13
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑋 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
108 | 48, 16, 107 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
109 | 108 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ 𝑋)) |
110 | 109 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)) |
111 | 110 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) |
112 | 111 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅)))) |
113 | | cantnflem1.h |
. . . . . . . . 9
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐺‘(𝑂‘𝑘))) +o 𝑧)), ∅) |
114 | 8, 9, 10, 11, 12, 13, 14, 15, 2, 113 | cantnflem1d 9376 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
115 | 112, 114 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) |
116 | | ss0 4329 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (◡𝑂‘𝑋) = ∅) |
117 | 116 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘∅)) |
118 | 117 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘∅))) |
119 | 118 | ifbid 4479 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)) |
120 | 119 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) |
121 | 120 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅)))) |
122 | | suceq 6316 |
. . . . . . . . . . 11
⊢ ((◡𝑂‘𝑋) = ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
123 | 116, 122 | syl 17 |
. . . . . . . . . 10
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → suc (◡𝑂‘𝑋) = suc ∅) |
124 | 123 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc ∅)) |
125 | 121, 124 | eleq12d 2833 |
. . . . . . . 8
⊢ ((◡𝑂‘𝑋) ⊆ ∅ → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
126 | 125 | adantl 481 |
. . . . . . 7
⊢ ((∅
∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
127 | 115, 126 | syl5ibcom 244 |
. . . . . 6
⊢ (𝜑 → ((∅ ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∅) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∅), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∅))) |
128 | | ordelon 6275 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂) → (◡𝑂‘𝑋) ∈ On) |
129 | 36, 52, 128 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝑂‘𝑋) ∈ On) |
130 | 36 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord dom 𝑂) |
131 | | ordelon 6275 |
. . . . . . . . . . . 12
⊢ ((Ord dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
132 | 130, 131 | sylan 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → suc 𝑢 ∈ On) |
133 | | onsseleq 6292 |
. . . . . . . . . . 11
⊢ (((◡𝑂‘𝑋) ∈ On ∧ suc 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
134 | 129, 132,
133 | syl2an2r 681 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 ↔ ((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢))) |
135 | | sucelon 7639 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ On ↔ suc 𝑢 ∈ On) |
136 | 132, 135 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ On) |
137 | | eloni 6261 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ On → Ord 𝑢) |
138 | 136, 137 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → Ord 𝑢) |
139 | | ordsssuc 6337 |
. . . . . . . . . . . . 13
⊢ (((◡𝑂‘𝑋) ∈ On ∧ Ord 𝑢) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
140 | 129, 138,
139 | syl2an2r 681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
141 | | ordtr 6265 |
. . . . . . . . . . . . . . . . 17
⊢ (Ord dom
𝑂 → Tr dom 𝑂) |
142 | 36, 141 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Tr dom 𝑂) |
143 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ dom 𝑂) |
144 | | trsuc 6335 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr dom
𝑂 ∧ suc 𝑢 ∈ dom 𝑂) → 𝑢 ∈ dom 𝑂) |
145 | 142, 143,
144 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ dom 𝑂) |
146 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ⊆ 𝑢) |
147 | 145, 146 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) |
148 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐵 ∈ On) |
149 | | oecl 8329 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |
150 | 9, 148, 149 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑o 𝐵) ∈ On) |
151 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐴 ∈ On) |
152 | 8, 151, 148 | cantnff 9362 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) |
153 | 8, 9, 10 | cantnfs 9354 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) |
154 | 12, 153 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅)) |
155 | 154 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝐵⟶𝐴) |
156 | 155 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) ∈ 𝐴) |
157 | 8, 9, 10 | cantnfs 9354 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐺 ∈ 𝑆 ↔ (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅))) |
158 | 13, 157 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐺:𝐵⟶𝐴 ∧ 𝐺 finSupp ∅)) |
159 | 158 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
160 | 8, 9, 10, 11, 12, 13, 14, 15 | oemapvali 9372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) |
161 | 160 | simp1d 1140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
162 | 159, 161 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐴) |
163 | 162 | ne0d 4266 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ≠ ∅) |
164 | | on0eln0 6306 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
165 | 9, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
166 | 163, 165 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ∅ ∈ 𝐴) |
167 | 166 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝐴) |
168 | 156, 167 | ifcld 4502 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ 𝐴) |
169 | 168 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴) |
170 | 10 | mptexd 7082 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V) |
171 | | funmpt 6456 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun
(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
172 | 171 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
173 | 154 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹 finSupp ∅) |
174 | | ssidd 3940 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐹 supp ∅) ⊆ (𝐹 supp ∅)) |
175 | | 0ex 5226 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ∅
∈ V |
176 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ∅ ∈
V) |
177 | 155, 174,
10, 176 | suppssr 7983 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → (𝐹‘𝑥) = ∅) |
178 | 177 | ifeq1d 4475 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
179 | | ifid 4496 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅) =
∅ |
180 | 178, 179 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐹 supp ∅))) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
181 | 180, 10 | suppss2 7987 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅)) |
182 | | fsuppsssupp 9074 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ V ∧ Fun (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∧ (𝐹 finSupp ∅ ∧ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝐹 supp ∅))) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
183 | 170, 172,
173, 181, 182 | syl22anc 835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅) |
184 | 8, 9, 10 | cantnfs 9354 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆 ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)):𝐵⟶𝐴 ∧ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) finSupp
∅))) |
185 | 169, 183,
184 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
186 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) ∈ 𝑆) |
187 | 152, 186 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑o 𝐵)) |
188 | | onelon 6276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑o 𝐵) ∈ On ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐴 ↑o 𝐵)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
189 | 150, 187,
188 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On) |
190 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → dom 𝑂 ∈ ω) |
191 | | elnn 7698 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((suc
𝑢 ∈ dom 𝑂 ∧ dom 𝑂 ∈ ω) → suc 𝑢 ∈
ω) |
192 | 143, 190,
191 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc 𝑢 ∈ ω) |
193 | 113 | cantnfvalf 9353 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻:ω⟶On |
194 | 193 | ffvelrni 6942 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑢 ∈ ω →
(𝐻‘suc 𝑢) ∈ On) |
195 | 192, 194 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc 𝑢) ∈ On) |
196 | | suppssdm 7964 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 supp ∅) ⊆ dom 𝐺 |
197 | 196, 159 | fssdm 6604 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝐵) |
198 | 197 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐺 supp ∅) ⊆ 𝐵) |
199 | 2 | oif 9219 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑂:dom 𝑂⟶(𝐺 supp ∅) |
200 | 199 | ffvelrni 6942 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc
𝑢 ∈ dom 𝑂 → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
201 | 143, 200 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ (𝐺 supp ∅)) |
202 | 198, 201 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ 𝐵) |
203 | | onelon 6276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ On ∧ (𝑂‘suc 𝑢) ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
204 | 10, 202, 203 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘suc 𝑢) ∈ On) |
205 | | oecl 8329 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On) |
206 | 9, 204, 205 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On) |
207 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝐹:𝐵⟶𝐴) |
208 | 207, 202 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) |
209 | | onelon 6276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ 𝐴) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
210 | 9, 208, 209 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) ∈ On) |
211 | | omcl 8328 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ↑o (𝑂‘suc 𝑢)) ∈ On ∧ (𝐹‘(𝑂‘suc 𝑢)) ∈ On) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
212 | 206, 210,
211 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) |
213 | | oaord 8340 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ On ∧ (𝐻‘suc 𝑢) ∈ On ∧ ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) ∈ On) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
214 | 189, 195,
212, 213 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
215 | | ifeq1 4460 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅)) |
216 | | ifid 4496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑥 ⊆ (𝑂‘suc 𝑢), ∅, ∅) =
∅ |
217 | 215, 216 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = ∅) |
218 | | ifeq1 4460 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅)) |
219 | | ifid 4496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), ∅, ∅) =
∅ |
220 | 218, 219 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) = ∅ → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = ∅) |
221 | 217, 220 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑥) = ∅ → (if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) ↔ ∅ =
∅)) |
222 | | onss 7611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
223 | 10, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ⊆ On) |
224 | 223 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
225 | 224 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) |
226 | 204 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑂‘suc 𝑢) ∈ On) |
227 | | onsseleq 6292 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∈ On ∧ (𝑂‘suc 𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
228 | 225, 226,
227 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
229 | 228 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
230 | 199 | ffvelrni 6942 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈ dom 𝑂 → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
231 | 145, 230 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝐺 supp ∅)) |
232 | 198, 231 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ 𝐵) |
233 | | onelon 6276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐵 ∈ On ∧ (𝑂‘𝑢) ∈ 𝐵) → (𝑂‘𝑢) ∈ On) |
234 | 10, 232, 233 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ On) |
235 | 234 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑂‘𝑢) ∈ On) |
236 | | onsssuc 6338 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
237 | 225, 235,
236 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ suc (𝑂‘𝑢))) |
238 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 𝑢 ∈ V |
239 | 238 | sucid 6330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ 𝑢 ∈ suc 𝑢 |
240 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
241 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
242 | 240, 145,
143, 241 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 E suc 𝑢 ↔ (𝑂‘𝑢) E (𝑂‘suc 𝑢))) |
243 | 238 | sucex 7633 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ suc 𝑢 ∈ V |
244 | 243 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 E suc 𝑢 ↔ 𝑢 ∈ suc 𝑢) |
245 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑂‘suc 𝑢) ∈ V |
246 | 245 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘𝑢) E (𝑂‘suc 𝑢) ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
247 | 242, 244,
246 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑢 ∈ suc 𝑢 ↔ (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢))) |
248 | 239, 247 | mpbii 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘𝑢) ∈ (𝑂‘suc 𝑢)) |
249 | | eloni 6261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘suc 𝑢) ∈ On → Ord (𝑂‘suc 𝑢)) |
250 | 204, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → Ord (𝑂‘suc 𝑢)) |
251 | | ordelsuc 7642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑂‘𝑢) ∈ On ∧ Ord (𝑂‘suc 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
252 | 234, 250,
251 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑂‘𝑢) ∈ (𝑂‘suc 𝑢) ↔ suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢))) |
253 | 248, 252 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
254 | 253 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → suc (𝑂‘𝑢) ⊆ (𝑂‘suc 𝑢)) |
255 | 254 | sseld 3916 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ suc (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
256 | 237, 255 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
257 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ 𝑥) |
258 | 240 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
259 | 258, 47 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
260 | 8, 9, 10, 11, 12, 13, 14, 15, 2 | cantnflem1c 9375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅)) |
261 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
262 | 259, 260,
261 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
263 | 257, 262 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
264 | 145 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ dom 𝑂) |
265 | 259, 49, 50 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
266 | 265, 260 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
267 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
268 | 258, 264,
266, 267 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 E (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)))) |
269 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (◡𝑂‘𝑥) ∈ V |
270 | 269 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑢 E (◡𝑂‘𝑥) ↔ 𝑢 ∈ (◡𝑂‘𝑥)) |
271 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑂‘(◡𝑂‘𝑥)) ∈ V |
272 | 271 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑂‘𝑢) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥))) |
273 | 268, 270,
272 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘𝑢) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
274 | 263, 273 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑢 ∈ (◡𝑂‘𝑥)) |
275 | | ordelon 6275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((Ord dom
𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂) → (◡𝑂‘𝑥) ∈ On) |
276 | 36, 266, 275 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (◡𝑂‘𝑥) ∈ On) |
277 | | eloni 6261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((◡𝑂‘𝑥) ∈ On → Ord (◡𝑂‘𝑥)) |
278 | 276, 277 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → Ord (◡𝑂‘𝑥)) |
279 | | ordelsuc 7642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑢 ∈ (◡𝑂‘𝑥) ∧ Ord (◡𝑂‘𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
280 | 274, 278,
279 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (𝑢 ∈ (◡𝑂‘𝑥) ↔ suc 𝑢 ⊆ (◡𝑂‘𝑥))) |
281 | 274, 280 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ⊆ (◡𝑂‘𝑥)) |
282 | 143 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ dom 𝑂) |
283 | 36, 282, 131 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → suc 𝑢 ∈ On) |
284 | | ontri1 6285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((suc
𝑢 ∈ On ∧ (◡𝑂‘𝑥) ∈ On) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
285 | 283, 276,
284 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → (suc 𝑢 ⊆ (◡𝑂‘𝑥) ↔ ¬ (◡𝑂‘𝑥) ∈ suc 𝑢)) |
286 | 281, 285 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ (◡𝑂‘𝑥) ∈ suc 𝑢) |
287 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑥) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
288 | 258, 266,
282, 287 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢))) |
289 | 243 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((◡𝑂‘𝑥) E suc 𝑢 ↔ (◡𝑂‘𝑥) ∈ suc 𝑢) |
290 | 245 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑂‘(◡𝑂‘𝑥)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢)) |
291 | 288, 289,
290 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢))) |
292 | 262 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((𝑂‘(◡𝑂‘𝑥)) ∈ (𝑂‘suc 𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
293 | 291, 292 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ((◡𝑂‘𝑥) ∈ suc 𝑢 ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
294 | 286, 293 | mtbid 323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝑂‘suc 𝑢)) |
295 | 294 | expr 456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑂‘𝑢) ∈ 𝑥 → ¬ 𝑥 ∈ (𝑂‘suc 𝑢))) |
296 | 295 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → ¬ (𝑂‘𝑢) ∈ 𝑥)) |
297 | | ontri1 6285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ (𝑂‘𝑢) ∈ On) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
298 | 225, 235,
297 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ ¬ (𝑂‘𝑢) ∈ 𝑥)) |
299 | 296, 298 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ∈ (𝑂‘suc 𝑢) → 𝑥 ⊆ (𝑂‘𝑢))) |
300 | 256, 299 | impbid 211 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑥 ∈ (𝑂‘suc 𝑢))) |
301 | 300 | orbi1d 913 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 ∈ (𝑂‘suc 𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
302 | 229, 301 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)))) |
303 | | orcom 866 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ⊆ (𝑂‘𝑢) ∨ 𝑥 = (𝑂‘suc 𝑢)) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢))) |
304 | 302, 303 | bitrdi 286 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → (𝑥 ⊆ (𝑂‘suc 𝑢) ↔ (𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)))) |
305 | 304 | ifbid 4479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ≠ ∅) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
306 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ∅ = ∅) |
307 | 221, 305,
306 | pm2.61ne 3029 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅) = if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) |
308 | 307 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) |
309 | 308 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)))) |
310 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑥) ∈ V |
311 | 310, 175 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V |
312 | 311 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
313 | 312 | ralrimivw 3108 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑥 ∈ 𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
314 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
315 | 314 | fnmpt 6557 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑥 ∈
𝐵 if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
316 | 313, 315 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵) |
317 | 175 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∅ ∈ V) |
318 | | suppvalfn 7956 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅}) |
319 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦𝐵 |
320 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥𝐵 |
321 | | nffvmpt1 6767 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) |
322 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑥∅ |
323 | 321, 322 | nfne 3044 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑥((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ |
324 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑦((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ |
325 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥)) |
326 | 325 | neeq1d 3002 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑥 → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅ ↔ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅)) |
327 | 319, 320,
323, 324, 326 | cbvrabw 3414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {𝑦 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} |
328 | 318, 327 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V) →
((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
329 | 316, 148,
317, 328 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅}) |
330 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) |
331 | 311 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V) |
332 | 330, 331 | fvmpt2d 6870 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) = if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) |
333 | 332 | neeq1d 3002 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
334 | 331 | biantrurd 532 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅))) |
335 | | dif1o 8292 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
↔ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ V ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅)) |
336 | 334, 335 | bitr4di 288 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o))) |
337 | 333, 336 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅ ↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o))) |
338 | 337 | rabbidva 3402 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑥) ≠ ∅} = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o)}) |
339 | 329, 338 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) = {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖
1o)}) |
340 | 311, 335 | mpbiran 705 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
↔ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅) |
341 | | ifeq1 4460 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘𝑢), ∅, ∅)) |
342 | 341, 179 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹‘𝑥) = ∅ → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
343 | 342 | necon3i 2975 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → (𝐹‘𝑥) ≠ ∅) |
344 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑥 ⊆ (𝑂‘𝑢) → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = ∅) |
345 | 344 | necon1ai 2970 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ⊆ (𝑂‘𝑢)) |
346 | 343, 345 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → ((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢))) |
347 | 256 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (((𝐹‘𝑥) ≠ ∅ ∧ 𝑥 ⊆ (𝑂‘𝑢)) → 𝑥 ∈ (𝑂‘suc 𝑢))) |
348 | 346, 347 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ≠ ∅ → 𝑥 ∈ (𝑂‘suc 𝑢))) |
349 | 340, 348 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) → (if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)
→ 𝑥 ∈ (𝑂‘suc 𝑢))) |
350 | 349 | 3impia 1115 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵 ∧ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o))
→ 𝑥 ∈ (𝑂‘suc 𝑢)) |
351 | 350 | rabssdv 4004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → {𝑥 ∈ 𝐵 ∣ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) ∈ (V ∖ 1o)}
⊆ (𝑂‘suc 𝑢)) |
352 | 339, 351 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)) supp ∅) ⊆ (𝑂‘suc 𝑢)) |
353 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 = (𝑂‘suc 𝑢) ↔ 𝑦 = (𝑂‘suc 𝑢))) |
354 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (𝑂‘𝑢) ↔ 𝑦 ⊆ (𝑂‘𝑢))) |
355 | 353, 354 | orbi12d 915 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → ((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)) ↔ (𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)))) |
356 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
357 | 355, 356 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
358 | 357 | cbvmptv 5183 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
359 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = (𝑂‘suc 𝑢) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
360 | 359 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 = (𝑂‘suc 𝑢)) → (𝐹‘𝑦) = (𝐹‘(𝑂‘suc 𝑢))) |
361 | 360 | ifeq1da 4487 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
362 | 354, 356 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑦 → if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
363 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹‘𝑦) ∈ V |
364 | 363, 175 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅) ∈ V |
365 | 362, 314,
364 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦) = if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
366 | 365 | ifeq2d 4476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅))) |
367 | | ifor 4510 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅) = if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), if(𝑦 ⊆ (𝑂‘𝑢), (𝐹‘𝑦), ∅)) |
368 | 366, 367 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘𝑦), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
369 | 361, 368 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐵 → if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦)) = if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
370 | 369 | mpteq2ia 5173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) = (𝑦 ∈ 𝐵 ↦ if((𝑦 = (𝑂‘suc 𝑢) ∨ 𝑦 ⊆ (𝑂‘𝑢)), (𝐹‘𝑦), ∅)) |
371 | 358, 370 | eqtr4i 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) = (𝑦 ∈ 𝐵 ↦ if(𝑦 = (𝑂‘suc 𝑢), (𝐹‘(𝑂‘suc 𝑢)), ((𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))‘𝑦))) |
372 | 8, 151, 148, 186, 202, 208, 352, 371 | cantnfp1 9369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅)) ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))))) |
373 | 372 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if((𝑥 = (𝑂‘suc 𝑢) ∨ 𝑥 ⊆ (𝑂‘𝑢)), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
374 | 309, 373 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))))) |
375 | 8, 9, 10, 2, 13, 113 | cantnfsuc 9358 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ suc 𝑢 ∈ ω) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
376 | 192, 375 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
377 | 160 | simp3d 1142 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
378 | 377 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
379 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) = 𝑋) |
380 | 136 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑢 ∈ On) |
381 | | onsssuc 6338 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((◡𝑂‘𝑋) ∈ On ∧ 𝑢 ∈ On) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
382 | 129, 380,
381 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ⊆ 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢)) |
383 | 146, 382 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ suc 𝑢) |
384 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (◡𝑂‘𝑋) ∈ dom 𝑂) |
385 | | isorel 7177 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ ((◡𝑂‘𝑋) ∈ dom 𝑂 ∧ suc 𝑢 ∈ dom 𝑂)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
386 | 240, 384,
143, 385 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) E suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢))) |
387 | 243 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((◡𝑂‘𝑋) E suc 𝑢 ↔ (◡𝑂‘𝑋) ∈ suc 𝑢) |
388 | 245 | epeli 5488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑂‘(◡𝑂‘𝑋)) E (𝑂‘suc 𝑢) ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
389 | 386, 387,
388 | 3bitr3g 312 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((◡𝑂‘𝑋) ∈ suc 𝑢 ↔ (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢))) |
390 | 383, 389 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝑂‘(◡𝑂‘𝑋)) ∈ (𝑂‘suc 𝑢)) |
391 | 379, 390 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ∈ (𝑂‘suc 𝑢)) |
392 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ (𝑂‘suc 𝑢))) |
393 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐹‘𝑤) = (𝐹‘(𝑂‘suc 𝑢))) |
394 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑂‘suc 𝑢) → (𝐺‘𝑤) = (𝐺‘(𝑂‘suc 𝑢))) |
395 | 393, 394 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢)))) |
396 | 392, 395 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = (𝑂‘suc 𝑢) → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
397 | 396 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘suc 𝑢) ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ (𝑂‘suc 𝑢) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))))) |
398 | 202, 378,
391, 397 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐹‘(𝑂‘suc 𝑢)) = (𝐺‘(𝑂‘suc 𝑢))) |
399 | 398 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) = ((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢)))) |
400 | 399 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐺‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
401 | 376, 400 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (𝐻‘suc suc 𝑢) = (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢))) |
402 | 374, 401 | eleq12d 2833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢) ↔ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅)))) ∈ (((𝐴 ↑o (𝑂‘suc 𝑢)) ·o (𝐹‘(𝑂‘suc 𝑢))) +o (𝐻‘suc 𝑢)))) |
403 | 214, 402 | bitr4d 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
404 | 403 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
405 | 147, 404 | embantd 59 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
406 | 405 | expr 456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
407 | 140, 406 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ∈ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
408 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑂‘(◡𝑂‘𝑋)) = (𝑂‘suc 𝑢)) |
409 | 408 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)) ↔ 𝑥 ⊆ (𝑂‘suc 𝑢))) |
410 | 409 | ifbid 4479 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅) = if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)) |
411 | 410 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) |
412 | 411 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅)))) |
413 | | suceq 6316 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → suc (◡𝑂‘𝑋) = suc suc 𝑢) |
414 | 413 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (𝐻‘suc (◡𝑂‘𝑋)) = (𝐻‘suc suc 𝑢)) |
415 | 412, 414 | eleq12d 2833 |
. . . . . . . . . . . . . 14
⊢ ((◡𝑂‘𝑋) = suc 𝑢 → (((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘(◡𝑂‘𝑋)), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋)) ↔ ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
416 | 115, 415 | syl5ibcom 244 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
417 | 416 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))) |
418 | 417 | a1dd 50 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) = suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
419 | 407, 418 | jaod 855 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → (((◡𝑂‘𝑋) ∈ suc 𝑢 ∨ (◡𝑂‘𝑋) = suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
420 | 134, 419 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ suc 𝑢 ∈ dom 𝑂) → ((◡𝑂‘𝑋) ⊆ suc 𝑢 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
421 | 420 | expimpd 453 |
. . . . . . . 8
⊢ (𝜑 → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
422 | 421 | com23 86 |
. . . . . . 7
⊢ (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢)))) |
423 | 422 | a1i 11 |
. . . . . 6
⊢ (𝑢 ∈ ω → (𝜑 → (((𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑢)) → ((suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ suc 𝑢) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘suc 𝑢), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc suc 𝑢))))) |
424 | 82, 94, 106, 127, 423 | finds2 7721 |
. . . . 5
⊢ (𝑦 ∈ ω → (𝜑 → ((𝑦 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑦) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘𝑦), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc 𝑦)))) |
425 | 70, 424 | vtoclga 3503 |
. . . 4
⊢ (∪ dom 𝑂 ∈ ω → (𝜑 → ((∪ dom
𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)))) |
426 | 57, 425 | mpcom 38 |
. . 3
⊢ (𝜑 → ((∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ ∪ dom
𝑂) → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂))) |
427 | 44, 54, 426 | mp2and 695 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc ∪ dom
𝑂)) |
428 | 155 | feqmptd 6819 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥))) |
429 | | eqeq2 2750 |
. . . . . 6
⊢ ((𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
430 | | eqeq2 2750 |
. . . . . 6
⊢ (∅
= if(𝑥 ⊆ (𝑂‘∪ dom 𝑂), (𝐹‘𝑥), ∅) → ((𝐹‘𝑥) = ∅ ↔ (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
431 | | eqidd 2739 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
432 | 199 | ffvelrni 6942 |
. . . . . . . . . . . . . 14
⊢ (∪ dom 𝑂 ∈ dom 𝑂 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
433 | 44, 432 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ (𝐺 supp ∅)) |
434 | 197, 433 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈ 𝐵) |
435 | | onelon 6276 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
436 | 10, 434, 435 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘∪ dom
𝑂) ∈
On) |
437 | 436 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂‘∪ dom
𝑂) ∈
On) |
438 | | ontri1 6285 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
439 | 224, 437,
438 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑥)) |
440 | 439 | con2bid 354 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 ↔ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂))) |
441 | | simprl 767 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ 𝐵) |
442 | 377 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))) |
443 | | eloni 6261 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂‘𝑋) ∈ On → Ord (◡𝑂‘𝑋)) |
444 | 129, 443 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord (◡𝑂‘𝑋)) |
445 | | orduni 7616 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord dom
𝑂 → Ord ∪ dom 𝑂) |
446 | 36, 445 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ Ord ∪ dom 𝑂 |
447 | | ordtri1 6284 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
(◡𝑂‘𝑋) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
448 | 444, 446,
447 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝑂‘𝑋) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋))) |
449 | 54, 448 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑋)) |
450 | | isorel 7177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
451 | 46, 44, 52, 450 | syl12anc 833 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑋)))) |
452 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑂‘𝑋) ∈ V |
453 | 452 | epeli 5488 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑋) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑋)) |
454 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑂‘(◡𝑂‘𝑋)) ∈ V |
455 | 454 | epeli 5488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋))) |
456 | 451, 453,
455 | 3bitr3g 312 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)))) |
457 | 108 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑋)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
458 | 456, 457 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∪ dom 𝑂 ∈ (◡𝑂‘𝑋) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑋)) |
459 | 449, 458 | mtbid 323 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ (𝑂‘∪ dom
𝑂) ∈ 𝑋) |
460 | | onelon 6276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ On ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ On) |
461 | 10, 161, 460 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ∈ On) |
462 | | ontri1 6285 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ (𝑂‘∪ dom 𝑂) ∈ On) → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
463 | 461, 436,
462 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ⊆ (𝑂‘∪ dom
𝑂) ↔ ¬ (𝑂‘∪ dom 𝑂) ∈ 𝑋)) |
464 | 459, 463 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
465 | 464 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ⊆ (𝑂‘∪ dom
𝑂)) |
466 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
467 | 224 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ On) |
468 | | ontr2 6298 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ 𝑥 ∈ On) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
469 | 461, 467,
468 | syl2an2r 681 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ((𝑋 ⊆ (𝑂‘∪ dom
𝑂) ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥) → 𝑋 ∈ 𝑥)) |
470 | 465, 466,
469 | mp2and 695 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑋 ∈ 𝑥) |
471 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑋 ∈ 𝑤 ↔ 𝑋 ∈ 𝑥)) |
472 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
473 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝐺‘𝑤) = (𝐺‘𝑥)) |
474 | 472, 473 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → ((𝐹‘𝑤) = (𝐺‘𝑤) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
475 | 471, 474 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
476 | 475 | rspcv 3547 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑋 ∈ 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥)))) |
477 | 441, 442,
470, 476 | syl3c 66 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
478 | 466 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘∪ dom
𝑂) ∈ 𝑥) |
479 | 46 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅))) |
480 | 44 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ dom 𝑂) |
481 | 51 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ◡𝑂:(𝐺 supp ∅)⟶dom 𝑂) |
482 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . 18
⊢ ((◡𝑂:(𝐺 supp ∅)⟶dom 𝑂 ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
483 | 481, 482 | sylancom 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ dom 𝑂) |
484 | | isorel 7177 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑂 Isom E , E (dom 𝑂, (𝐺 supp ∅)) ∧ (∪ dom 𝑂 ∈ dom 𝑂 ∧ (◡𝑂‘𝑥) ∈ dom 𝑂)) → (∪ dom
𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
485 | 479, 480,
483, 484 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) E (𝑂‘(◡𝑂‘𝑥)))) |
486 | 269 | epeli 5488 |
. . . . . . . . . . . . . . . 16
⊢ (∪ dom 𝑂 E (◡𝑂‘𝑥) ↔ ∪ dom
𝑂 ∈ (◡𝑂‘𝑥)) |
487 | 271 | epeli 5488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑂‘∪ dom 𝑂) E (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥))) |
488 | 485, 486,
487 | 3bitr3g 312 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)))) |
489 | 48 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → 𝑂:dom 𝑂–1-1-onto→(𝐺 supp ∅)) |
490 | 489, 261 | sylancom 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (𝑂‘(◡𝑂‘𝑥)) = 𝑥) |
491 | 490 | eleq2d 2824 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((𝑂‘∪ dom
𝑂) ∈ (𝑂‘(◡𝑂‘𝑥)) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
492 | 488, 491 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (∪ dom 𝑂 ∈ (◡𝑂‘𝑥) ↔ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) |
493 | 478, 492 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
494 | | elssuni 4868 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝑂‘𝑥) ∈ dom 𝑂 → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
495 | 483, 494 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ⊆ ∪ dom
𝑂) |
496 | 36, 483, 275 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → (◡𝑂‘𝑥) ∈ On) |
497 | 496, 277 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → Ord (◡𝑂‘𝑥)) |
498 | | ordtri1 6284 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
(◡𝑂‘𝑥) ∧ Ord ∪ dom
𝑂) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
499 | 497, 446,
498 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ((◡𝑂‘𝑥) ⊆ ∪ dom
𝑂 ↔ ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥))) |
500 | 495, 499 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) ∧ 𝑥 ∈ (𝐺 supp ∅)) → ¬ ∪ dom 𝑂 ∈ (◡𝑂‘𝑥)) |
501 | 493, 500 | pm2.65da 813 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → ¬ 𝑥 ∈ (𝐺 supp ∅)) |
502 | 441, 501 | eldifd 3894 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) |
503 | | ssidd 3940 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 supp ∅) ⊆ (𝐺 supp ∅)) |
504 | 159, 503,
10, 176 | suppssr 7983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ (𝐺 supp ∅))) → (𝐺‘𝑥) = ∅) |
505 | 502, 504 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐺‘𝑥) = ∅) |
506 | 477, 505 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑂‘∪ dom
𝑂) ∈ 𝑥)) → (𝐹‘𝑥) = ∅) |
507 | 506 | expr 456 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑂‘∪ dom
𝑂) ∈ 𝑥 → (𝐹‘𝑥) = ∅)) |
508 | 440, 507 | sylbird 259 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂) → (𝐹‘𝑥) = ∅)) |
509 | 508 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ ¬ 𝑥 ⊆ (𝑂‘∪ dom
𝑂)) → (𝐹‘𝑥) = ∅) |
510 | 429, 430,
431, 509 | ifbothda 4494 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐹‘𝑥) = if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)) |
511 | 510 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
512 | 428, 511 | eqtrd 2778 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅))) |
513 | 512 | fveq2d 6760 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ (𝑂‘∪ dom
𝑂), (𝐹‘𝑥), ∅)))) |
514 | 8, 9, 10, 2, 13, 113 | cantnfval 9356 |
. . 3
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘dom 𝑂)) |
515 | 43 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (𝐻‘dom 𝑂) = (𝐻‘suc ∪ dom
𝑂)) |
516 | 514, 515 | eqtrd 2778 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = (𝐻‘suc ∪ dom
𝑂)) |
517 | 427, 513,
516 | 3eltr4d 2854 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺)) |