![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifan | Structured version Visualization version GIF version |
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifan | ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4533 | . . 3 ⊢ (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵)) | |
2 | ibar 530 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 2 | ifbid 4550 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∧ 𝜓), 𝐴, 𝐵)) |
4 | 1, 3 | eqtr2d 2774 | . 2 ⊢ (𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
5 | simpl 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
7 | 6 | iffalsed 4538 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = 𝐵) |
8 | iffalse 4536 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵) | |
9 | 7, 8 | eqtr4d 2776 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 = wceq 1542 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4528 |
This theorem is referenced by: itg0 25279 iblre 25293 itgreval 25296 iblss 25304 iblss2 25305 itgle 25309 itgss 25311 itgeqa 25313 iblconst 25317 itgconst 25318 ibladdlem 25319 iblabslem 25327 iblabsr 25329 iblmulc2 25330 itgsplit 25335 bddiblnc 25341 itgcn 25344 mrsubrn 34442 itg2gt0cn 36481 ibladdnclem 36482 iblabsnclem 36489 iblmulc2nc 36491 selvvvval 41107 iblsplit 44617 |
Copyright terms: Public domain | W3C validator |