| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifan | Structured version Visualization version GIF version | ||
| Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifan | ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4479 | . . 3 ⊢ (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵)) | |
| 2 | ibar 528 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | ifbid 4497 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∧ 𝜓), 𝐴, 𝐵)) |
| 4 | 1, 3 | eqtr2d 2766 | . 2 ⊢ (𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
| 7 | 6 | iffalsed 4484 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = 𝐵) |
| 8 | iffalse 4482 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵) | |
| 9 | 7, 8 | eqtr4d 2768 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4474 |
| This theorem is referenced by: psdmvr 22077 itg0 25701 iblre 25715 itgreval 25718 iblss 25726 iblss2 25727 itgle 25731 itgss 25733 itgeqa 25735 iblconst 25739 itgconst 25740 ibladdlem 25741 iblabslem 25749 iblabsr 25751 iblmulc2 25752 itgsplit 25757 bddiblnc 25763 itgcn 25766 esplyfv 33581 mrsubrn 35525 itg2gt0cn 37694 ibladdnclem 37695 iblabsnclem 37702 iblmulc2nc 37704 selvvvval 42597 iblsplit 45983 |
| Copyright terms: Public domain | W3C validator |