MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifan Structured version   Visualization version   GIF version

Theorem ifan 4582
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ifan if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)

Proof of Theorem ifan
StepHypRef Expression
1 iftrue 4535 . . 3 (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵))
2 ibar 527 . . . 4 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
32ifbid 4552 . . 3 (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑𝜓), 𝐴, 𝐵))
41, 3eqtr2d 2766 . 2 (𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵))
5 simpl 481 . . . . 5 ((𝜑𝜓) → 𝜑)
65con3i 154 . . . 4 𝜑 → ¬ (𝜑𝜓))
76iffalsed 4540 . . 3 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = 𝐵)
8 iffalse 4538 . . 3 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵)
97, 8eqtr4d 2768 . 2 𝜑 → if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵))
104, 9pm2.61i 182 1 if((𝜑𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 394   = wceq 1533  ifcif 4529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-if 4530
This theorem is referenced by:  itg0  25739  iblre  25753  itgreval  25756  iblss  25764  iblss2  25765  itgle  25769  itgss  25771  itgeqa  25773  iblconst  25777  itgconst  25778  ibladdlem  25779  iblabslem  25787  iblabsr  25789  iblmulc2  25790  itgsplit  25795  bddiblnc  25801  itgcn  25804  mrsubrn  35193  itg2gt0cn  37218  ibladdnclem  37219  iblabsnclem  37226  iblmulc2nc  37228  selvvvval  41883  iblsplit  45417
  Copyright terms: Public domain W3C validator