![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifan | Structured version Visualization version GIF version |
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifan | ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4536 | . . 3 ⊢ (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵)) | |
2 | ibar 528 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 2 | ifbid 4553 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∧ 𝜓), 𝐴, 𝐵)) |
4 | 1, 3 | eqtr2d 2775 | . 2 ⊢ (𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
7 | 6 | iffalsed 4541 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = 𝐵) |
8 | iffalse 4539 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵) | |
9 | 7, 8 | eqtr4d 2777 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1536 ifcif 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-if 4531 |
This theorem is referenced by: itg0 25829 iblre 25843 itgreval 25846 iblss 25854 iblss2 25855 itgle 25859 itgss 25861 itgeqa 25863 iblconst 25867 itgconst 25868 ibladdlem 25869 iblabslem 25877 iblabsr 25879 iblmulc2 25880 itgsplit 25885 bddiblnc 25891 itgcn 25894 mrsubrn 35497 itg2gt0cn 37661 ibladdnclem 37662 iblabsnclem 37669 iblmulc2nc 37671 selvvvval 42571 iblsplit 45921 |
Copyright terms: Public domain | W3C validator |