Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifan | Structured version Visualization version GIF version |
Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ifan | ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4430 | . . 3 ⊢ (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵)) | |
2 | ibar 532 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 2 | ifbid 4447 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∧ 𝜓), 𝐴, 𝐵)) |
4 | 1, 3 | eqtr2d 2775 | . 2 ⊢ (𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
5 | simpl 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 5 | con3i 157 | . . . 4 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
7 | 6 | iffalsed 4435 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = 𝐵) |
8 | iffalse 4433 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵) | |
9 | 7, 8 | eqtr4d 2777 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
10 | 4, 9 | pm2.61i 185 | 1 ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 = wceq 1542 ifcif 4424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-if 4425 |
This theorem is referenced by: itg0 24544 iblre 24558 itgreval 24561 iblss 24569 iblss2 24570 itgle 24574 itgss 24576 itgeqa 24578 iblconst 24582 itgconst 24583 ibladdlem 24584 iblabslem 24592 iblabsr 24594 iblmulc2 24595 itgsplit 24600 bddiblnc 24606 itgcn 24609 mrsubrn 33058 itg2gt0cn 35487 ibladdnclem 35488 iblabsnclem 35495 iblmulc2nc 35497 iblsplit 43089 |
Copyright terms: Public domain | W3C validator |