| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifan | Structured version Visualization version GIF version | ||
| Description: Rewrite a conjunction in a conditional as two nested conditionals. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ifan | ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . 3 ⊢ (𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = if(𝜓, 𝐴, 𝐵)) | |
| 2 | ibar 528 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 2 | ifbid 4524 | . . 3 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if((𝜑 ∧ 𝜓), 𝐴, 𝐵)) |
| 4 | 1, 3 | eqtr2d 2771 | . 2 ⊢ (𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
| 7 | 6 | iffalsed 4511 | . . 3 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = 𝐵) |
| 8 | iffalse 4509 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) = 𝐵) | |
| 9 | 7, 8 | eqtr4d 2773 | . 2 ⊢ (¬ 𝜑 → if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵)) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ if((𝜑 ∧ 𝜓), 𝐴, 𝐵) = if(𝜑, if(𝜓, 𝐴, 𝐵), 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: psdmvr 22105 itg0 25731 iblre 25745 itgreval 25748 iblss 25756 iblss2 25757 itgle 25761 itgss 25763 itgeqa 25765 iblconst 25769 itgconst 25770 ibladdlem 25771 iblabslem 25779 iblabsr 25781 iblmulc2 25782 itgsplit 25787 bddiblnc 25793 itgcn 25796 mrsubrn 35481 itg2gt0cn 37645 ibladdnclem 37646 iblabsnclem 37653 iblmulc2nc 37655 selvvvval 42555 iblsplit 45943 |
| Copyright terms: Public domain | W3C validator |