MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifssun Structured version   Visualization version   GIF version

Theorem ifssun 4547
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifssun if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem ifssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . 3 {𝑥𝜑} = {𝑥𝜑}
21dfif4 4545 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑})))
3 inss1 4227 . 2 ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑}))) ⊆ (𝐴𝐵)
42, 3eqsstri 4011 1 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  {cab 2702  Vcvv 3461  cdif 3941  cun 3942  cin 3943  wss 3944  ifcif 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator