MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifssun Structured version   Visualization version   GIF version

Theorem ifssun 4473
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifssun if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem ifssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 {𝑥𝜑} = {𝑥𝜑}
21dfif4 4471 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑})))
3 inss1 4159 . 2 ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑}))) ⊆ (𝐴𝐵)
42, 3eqsstri 3951 1 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  {cab 2715  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  ifcif 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator