![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifssun | Structured version Visualization version GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
2 | 1 | dfif4 4563 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) |
3 | inss1 4258 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) ⊆ (𝐴 ∪ 𝐵) | |
4 | 2, 3 | eqsstri 4043 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |