| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifssun | Structured version Visualization version GIF version | ||
| Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
| 2 | 1 | dfif4 4512 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) |
| 3 | inss1 4208 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) ⊆ (𝐴 ∪ 𝐵) | |
| 4 | 2, 3 | eqsstri 4001 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2708 Vcvv 3455 ∖ cdif 3919 ∪ cun 3920 ∩ cin 3921 ⊆ wss 3922 ifcif 4496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |