![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifssun | Structured version Visualization version GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
2 | 1 | dfif4 4545 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) |
3 | inss1 4227 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) ⊆ (𝐴 ∪ 𝐵) | |
4 | 2, 3 | eqsstri 4011 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: {cab 2702 Vcvv 3461 ∖ cdif 3941 ∪ cun 3942 ∩ cin 3943 ⊆ wss 3944 ifcif 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |