Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifssun | Structured version Visualization version GIF version |
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifssun | ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
2 | 1 | dfif4 4474 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) |
3 | inss1 4162 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥 ∣ 𝜑})) ∩ (𝐵 ∪ {𝑥 ∣ 𝜑}))) ⊆ (𝐴 ∪ 𝐵) | |
4 | 2, 3 | eqsstri 3955 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: {cab 2715 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |