MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifssun Structured version   Visualization version   GIF version

Theorem ifssun 4509
Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024.)
Assertion
Ref Expression
ifssun if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem ifssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 {𝑥𝜑} = {𝑥𝜑}
21dfif4 4507 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑})))
3 inss1 4203 . 2 ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ {𝑥𝜑})) ∩ (𝐵 ∪ {𝑥𝜑}))) ⊆ (𝐴𝐵)
42, 3eqsstri 3996 1 if(𝜑, 𝐴, 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  {cab 2708  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  ifcif 4491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator