![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
Ref | Expression |
---|---|
ifeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 4533 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | |
2 | ifeq2 4534 | . 2 ⊢ (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷)) | |
3 | 1, 2 | sylan9eq 2793 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-un 3954 df-if 4530 |
This theorem is referenced by: xaddmnf1 13207 xpsrnbas 17517 ditg0 25370 mumullem2 26684 sqrtcval 42392 sqrtcval2 42393 |
Copyright terms: Public domain | W3C validator |