MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq12 Structured version   Visualization version   GIF version

Theorem ifeq12 4550
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 4536 . 2 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
2 ifeq2 4537 . 2 (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷))
31, 2sylan9eq 2796 1 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  ifcif 4532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3435  df-v 3481  df-un 3969  df-if 4533
This theorem is referenced by:  xaddmnf1  13273  xpsrnbas  17624  ditg0  25911  mumullem2  27246  sqrtcval  43645  sqrtcval2  43646
  Copyright terms: Public domain W3C validator