MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq12 Structured version   Visualization version   GIF version

Theorem ifeq12 4547
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
ifeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))

Proof of Theorem ifeq12
StepHypRef Expression
1 ifeq1 4533 . 2 (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶))
2 ifeq2 4534 . 2 (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷))
31, 2sylan9eq 2788 1 ((𝐴 = 𝐵𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  ifcif 4529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-un 3952  df-if 4530
This theorem is referenced by:  xaddmnf1  13240  xpsrnbas  17553  ditg0  25795  mumullem2  27125  sqrtcval  43071  sqrtcval2  43072
  Copyright terms: Public domain W3C validator