Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
Ref | Expression |
---|---|
ifeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 4468 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | |
2 | ifeq2 4469 | . 2 ⊢ (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-un 3896 df-if 4465 |
This theorem is referenced by: xaddmnf1 12944 xpsrnbas 17263 ditg0 24998 mumullem2 26310 sqrtcval 41202 sqrtcval2 41203 |
Copyright terms: Public domain | W3C validator |