| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
| Ref | Expression |
|---|---|
| ifeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1 4500 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | |
| 2 | ifeq2 4501 | . 2 ⊢ (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2785 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ifcif 4496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-un 3927 df-if 4497 |
| This theorem is referenced by: xaddmnf1 13201 xpsrnbas 17540 ditg0 25761 mumullem2 27097 sqrtcval 43602 sqrtcval2 43603 |
| Copyright terms: Public domain | W3C validator |