Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operators. (Contributed by NM, 1-Sep-2004.) |
Ref | Expression |
---|---|
ifeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1 4469 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) | |
2 | ifeq2 4470 | . 2 ⊢ (𝐶 = 𝐷 → if(𝜑, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐷)) | |
3 | 1, 2 | sylan9eq 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-un 3897 df-if 4466 |
This theorem is referenced by: xaddmnf1 13008 xpsrnbas 17327 ditg0 25062 mumullem2 26374 sqrtcval 41287 sqrtcval2 41288 |
Copyright terms: Public domain | W3C validator |