MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif4 Structured version   Visualization version   GIF version

Theorem dfif4 4488
Description: Alternate definition of the conditional operator df-if 4473. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif4 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif4
StepHypRef Expression
1 dfif3.1 . . 3 𝐶 = {𝑥𝜑}
21dfif3 4487 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
3 undir 4234 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))))
4 undi 4232 . . . 4 (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶)))
5 undi 4232 . . . . 5 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶)))
6 uncom 4105 . . . . . 6 (𝐶𝐵) = (𝐵𝐶)
7 unvdif 4422 . . . . . 6 (𝐶 ∪ (V ∖ 𝐶)) = V
86, 7ineq12i 4165 . . . . 5 ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶))) = ((𝐵𝐶) ∩ V)
9 inv1 4345 . . . . 5 ((𝐵𝐶) ∩ V) = (𝐵𝐶)
105, 8, 93eqtri 2758 . . . 4 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = (𝐵𝐶)
114, 10ineq12i 4165 . . 3 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶))
12 inass 4175 . . 3 (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
1311, 12eqtri 2754 . 2 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
142, 3, 133eqtri 2758 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  Vcvv 3436  cdif 3894  cun 3895  cin 3896  ifcif 4472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473
This theorem is referenced by:  dfif5  4489  ifssun  4490
  Copyright terms: Public domain W3C validator