MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif4 Structured version   Visualization version   GIF version

Theorem dfif4 4484
Description: Alternate definition of the conditional operator df-if 4470. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif4 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif4
StepHypRef Expression
1 dfif3.1 . . 3 𝐶 = {𝑥𝜑}
21dfif3 4483 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
3 undir 4255 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))))
4 undi 4253 . . . 4 (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶)))
5 undi 4253 . . . . 5 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶)))
6 uncom 4131 . . . . . 6 (𝐶𝐵) = (𝐵𝐶)
7 unvdif 4425 . . . . . 6 (𝐶 ∪ (V ∖ 𝐶)) = V
86, 7ineq12i 4189 . . . . 5 ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶))) = ((𝐵𝐶) ∩ V)
9 inv1 4350 . . . . 5 ((𝐵𝐶) ∩ V) = (𝐵𝐶)
105, 8, 93eqtri 2850 . . . 4 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = (𝐵𝐶)
114, 10ineq12i 4189 . . 3 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶))
12 inass 4198 . . 3 (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
1311, 12eqtri 2846 . 2 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
142, 3, 133eqtri 2850 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2801  Vcvv 3496  cdif 3935  cun 3936  cin 3937  ifcif 4469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470
This theorem is referenced by:  dfif5  4485
  Copyright terms: Public domain W3C validator