MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota4 Structured version   Visualization version   GIF version

Theorem dfiota4 6552
Description: The operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.)
Assertion
Ref Expression
dfiota4 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)

Proof of Theorem dfiota4
StepHypRef Expression
1 iotauni 6535 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 iotanul 6538 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
3 ifval 4567 . 2 ((℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)))
41, 2, 3mpbir2an 711 1 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  ∃!weu 2567  {cab 2713  c0 4332  ifcif 4524   cuni 4906  cio 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-uni 4907  df-iota 6513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator