MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota4 Structured version   Visualization version   GIF version

Theorem dfiota4 6503
Description: The operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.)
Assertion
Ref Expression
dfiota4 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)

Proof of Theorem dfiota4
StepHypRef Expression
1 iotauni 6486 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 iotanul 6489 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
3 ifval 4531 . 2 ((℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)))
41, 2, 3mpbir2an 711 1 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  ∃!weu 2561  {cab 2707  c0 4296  ifcif 4488   cuni 4871  cio 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-uni 4872  df-iota 6464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator