MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota4 Structured version   Visualization version   GIF version

Theorem dfiota4 6410
Description: The operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.)
Assertion
Ref Expression
dfiota4 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)

Proof of Theorem dfiota4
StepHypRef Expression
1 iotauni 6393 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 iotanul 6396 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
3 ifval 4498 . 2 ((℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)))
41, 2, 3mpbir2an 707 1 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  ∃!weu 2568  {cab 2715  c0 4253  ifcif 4456   cuni 4836  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator