| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiota4 | Structured version Visualization version GIF version | ||
| Description: The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
| Ref | Expression |
|---|---|
| dfiota4 | ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni 6466 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | iotanul 6469 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 3 | ifval 4519 | . 2 ⊢ ((℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃!weu 2565 {cab 2711 ∅c0 4284 ifcif 4476 ∪ cuni 4860 ℩cio 6443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |