| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfiota4 | Structured version Visualization version GIF version | ||
| Description: The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
| Ref | Expression |
|---|---|
| dfiota4 | ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotauni 6511 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
| 2 | iotanul 6514 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
| 3 | ifval 4548 | . 2 ⊢ ((℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃!weu 2568 {cab 2714 ∅c0 4313 ifcif 4505 ∪ cuni 4888 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |