![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiota4 | Structured version Visualization version GIF version |
Description: The ℩ operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.) |
Ref | Expression |
---|---|
dfiota4 | ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 6548 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
2 | iotanul 6551 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
3 | ifval 4590 | . 2 ⊢ ((℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅))) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ (℩𝑥𝜑) = if(∃!𝑥𝜑, ∪ {𝑥 ∣ 𝜑}, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃!weu 2571 {cab 2717 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |