MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota4 Structured version   Visualization version   GIF version

Theorem dfiota4 6481
Description: The operation using the if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.)
Assertion
Ref Expression
dfiota4 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)

Proof of Theorem dfiota4
StepHypRef Expression
1 iotauni 6466 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 iotanul 6469 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
3 ifval 4519 . 2 ((℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅) ↔ ((∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)))
41, 2, 3mpbir2an 711 1 (℩𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  ∃!weu 2565  {cab 2711  c0 4284  ifcif 4476   cuni 4860  cio 6443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-uni 4861  df-iota 6445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator