![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqif | Structured version Visualization version GIF version |
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.) |
Ref | Expression |
---|---|
eqif | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2740 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵)) | |
2 | eqeq2 2740 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶)) | |
3 | 1, 2 | elimif 4562 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ifcif 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-if 4526 |
This theorem is referenced by: ifval 4567 xpima 6181 fin23lem19 10354 fin23lem28 10358 fin23lem29 10359 fin23lem30 10360 aalioulem3 26263 ifnebib 32334 iocinif 32544 fsumcvg4 33546 ind1a 33633 esumsnf 33678 itg2addnclem2 37140 clsk1indlem4 43465 afvpcfv0 46517 |
Copyright terms: Public domain | W3C validator |