| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqif | Structured version Visualization version GIF version | ||
| Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.) |
| Ref | Expression |
|---|---|
| eqif | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2741 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq2 2741 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | elimif 4516 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: ifval 4521 xpima 6135 fin23lem19 10249 fin23lem28 10253 fin23lem29 10254 fin23lem30 10255 aalioulem3 26258 ifnebib 32511 iocinif 32737 ind1a 32815 fsumcvg4 33916 esumsnf 34030 itg2addnclem2 37651 clsk1indlem4 44017 afvpcfv0 47131 |
| Copyright terms: Public domain | W3C validator |