| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqif | Structured version Visualization version GIF version | ||
| Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.) |
| Ref | Expression |
|---|---|
| eqif | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2745 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵)) | |
| 2 | eqeq2 2745 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶)) | |
| 3 | 1, 2 | elimif 4512 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ifcif 4474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4475 |
| This theorem is referenced by: ifval 4517 xpima 6134 fin23lem19 10234 fin23lem28 10238 fin23lem29 10239 fin23lem30 10240 aalioulem3 26270 ifnebib 32531 iocinif 32768 ind1a 32845 fsumcvg4 33984 esumsnf 34098 itg2addnclem2 37733 clsk1indlem4 44162 afvpcfv0 47271 |
| Copyright terms: Public domain | W3C validator |