MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqif Structured version   Visualization version   GIF version

Theorem eqif 4465
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
eqif (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem eqif
StepHypRef Expression
1 eqeq2 2810 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵))
2 eqeq2 2810 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶))
31, 2elimif 4461 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844   = wceq 1538  ifcif 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-if 4426
This theorem is referenced by:  ifval  4466  xpima  6006  fin23lem19  9747  fin23lem28  9751  fin23lem29  9752  fin23lem30  9753  aalioulem3  24930  iocinif  30530  fsumcvg4  31303  ind1a  31388  esumsnf  31433  itg2addnclem2  35109  clsk1indlem4  40747  afvpcfv0  43702
  Copyright terms: Public domain W3C validator