MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqif Structured version   Visualization version   GIF version

Theorem eqif 4505
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
eqif (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem eqif
StepHypRef Expression
1 eqeq2 2751 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵))
2 eqeq2 2751 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶))
31, 2elimif 4501 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   = wceq 1541  ifcif 4464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-if 4465
This theorem is referenced by:  ifval  4506  xpima  6082  fin23lem19  10076  fin23lem28  10080  fin23lem29  10081  fin23lem30  10082  aalioulem3  25475  iocinif  31081  fsumcvg4  31879  ind1a  31966  esumsnf  32011  itg2addnclem2  35808  clsk1indlem4  41607  afvpcfv0  44589
  Copyright terms: Public domain W3C validator