MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqif Structured version   Visualization version   GIF version

Theorem eqif 4516
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
eqif (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem eqif
StepHypRef Expression
1 eqeq2 2745 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵))
2 eqeq2 2745 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶))
31, 2elimif 4512 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  ifcif 4474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-if 4475
This theorem is referenced by:  ifval  4517  xpima  6134  fin23lem19  10234  fin23lem28  10238  fin23lem29  10239  fin23lem30  10240  aalioulem3  26270  ifnebib  32531  iocinif  32768  ind1a  32845  fsumcvg4  33984  esumsnf  34098  itg2addnclem2  37733  clsk1indlem4  44162  afvpcfv0  47271
  Copyright terms: Public domain W3C validator