![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqif | Structured version Visualization version GIF version |
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.) |
Ref | Expression |
---|---|
eqif | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2744 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵)) | |
2 | eqeq2 2744 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶)) | |
3 | 1, 2 | elimif 4564 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4528 |
This theorem is referenced by: ifval 4569 xpima 6178 fin23lem19 10327 fin23lem28 10331 fin23lem29 10332 fin23lem30 10333 aalioulem3 25838 ifnebib 31768 iocinif 31979 fsumcvg4 32918 ind1a 33005 esumsnf 33050 itg2addnclem2 36528 clsk1indlem4 42780 afvpcfv0 45840 |
Copyright terms: Public domain | W3C validator |