| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of ℩': this is to df-aiota 47090 what dfiota4 6506 is to df-iota 6467. operation using the if operator. It is simpler than df-aiota 47090 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfaiota3 | ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiotaint 47096 | . 2 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
| 2 | aiotavb 47095 | . . 3 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V) |
| 4 | ifval 4534 | . 2 ⊢ ((℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃!weu 2562 {cab 2708 Vcvv 3450 ifcif 4491 ∩ cint 4913 ℩'caiota 47088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-uni 4875 df-int 4914 df-iota 6467 df-aiota 47090 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |