| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of ℩': this is to df-aiota 47209 what dfiota4 6478 is to df-iota 6442. operation using the if operator. It is simpler than df-aiota 47209 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfaiota3 | ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiotaint 47215 | . 2 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
| 2 | aiotavb 47214 | . . 3 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V) |
| 4 | ifval 4517 | . 2 ⊢ ((℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃!weu 2565 {cab 2711 Vcvv 3437 ifcif 4474 ∩ cint 4897 ℩'caiota 47207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-uni 4859 df-int 4898 df-iota 6442 df-aiota 47209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |