| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of ℩': this is to df-aiota 47062 what dfiota4 6522 is to df-iota 6483. operation using the if operator. It is simpler than df-aiota 47062 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfaiota3 | ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aiotaint 47068 | . 2 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
| 2 | aiotavb 47067 | . . 3 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V) |
| 4 | ifval 4543 | . 2 ⊢ ((℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V))) | |
| 5 | 1, 3, 4 | mpbir2an 711 | 1 ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃!weu 2567 {cab 2713 Vcvv 3459 ifcif 4500 ∩ cint 4922 ℩'caiota 47060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-uni 4884 df-int 4923 df-iota 6483 df-aiota 47062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |