![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota3 | Structured version Visualization version GIF version |
Description: Alternate definition of ℩': this is to df-aiota 45793 what dfiota4 6536 is to df-iota 6496. operation using the if operator. It is simpler than df-aiota 45793 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
Ref | Expression |
---|---|
dfaiota3 | ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aiotaint 45799 | . 2 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
2 | aiotavb 45798 | . . 3 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | |
3 | 2 | biimpi 215 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V) |
4 | ifval 4571 | . 2 ⊢ ((℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V))) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∃!weu 2563 {cab 2710 Vcvv 3475 ifcif 4529 ∩ cint 4951 ℩'caiota 45791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-uni 4910 df-int 4952 df-iota 6496 df-aiota 45793 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |