![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfaiota3 | Structured version Visualization version GIF version |
Description: Alternate definition of ℩': this is to df-aiota 47000 what dfiota4 6565 is to df-iota 6525. operation using the if operator. It is simpler than df-aiota 47000 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.) |
Ref | Expression |
---|---|
dfaiota3 | ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aiotaint 47006 | . 2 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
2 | aiotavb 47005 | . . 3 ⊢ (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V) | |
3 | 2 | biimpi 216 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V) |
4 | ifval 4590 | . 2 ⊢ ((℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V))) | |
5 | 1, 3, 4 | mpbir2an 710 | 1 ⊢ (℩'𝑥𝜑) = if(∃!𝑥𝜑, ∩ {𝑥 ∣ 𝜑}, V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃!weu 2571 {cab 2717 Vcvv 3488 ifcif 4548 ∩ cint 4970 ℩'caiota 46998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-uni 4932 df-int 4971 df-iota 6525 df-aiota 47000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |