Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfaiota3 Structured version   Visualization version   GIF version

Theorem dfaiota3 47041
Description: Alternate definition of ℩': this is to df-aiota 47034 what dfiota4 6554 is to df-iota 6515. operation using the if operator. It is simpler than df-aiota 47034 and uses no dummy variables, so it would be the preferred definition if ℩' becomes the description binder used in set.mm. (Contributed by BJ, 31-Aug-2024.)
Assertion
Ref Expression
dfaiota3 (℩'𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, V)

Proof of Theorem dfaiota3
StepHypRef Expression
1 aiotaint 47040 . 2 (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})
2 aiotavb 47039 . . 3 (¬ ∃!𝑥𝜑 ↔ (℩'𝑥𝜑) = V)
32biimpi 216 . 2 (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V)
4 ifval 4572 . 2 ((℩'𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, V) ↔ ((∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑}) ∧ (¬ ∃!𝑥𝜑 → (℩'𝑥𝜑) = V)))
51, 3, 4mpbir2an 711 1 (℩'𝑥𝜑) = if(∃!𝑥𝜑, {𝑥𝜑}, V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  ∃!weu 2565  {cab 2711  Vcvv 3477  ifcif 4530   cint 4950  ℩'caiota 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-uni 4912  df-int 4951  df-iota 6515  df-aiota 47034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator