Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projval Structured version   Visualization version   GIF version

Theorem bj-projval 35113
Description: Value of the class projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projval (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅))

Proof of Theorem bj-projval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsng 4572 . . . . . . . . 9 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
2 bj-xpima2sn 35075 . . . . . . . . 9 (𝐴 ∈ {𝐵} → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶)
31, 2syl6bir 253 . . . . . . . 8 (𝐴𝑉 → (𝐴 = 𝐵 → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶))
43imp 406 . . . . . . 7 ((𝐴𝑉𝐴 = 𝐵) → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶)
54eleq2d 2824 . . . . . 6 ((𝐴𝑉𝐴 = 𝐵) → ({𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}) ↔ {𝑥} ∈ tag 𝐶))
65abbidv 2808 . . . . 5 ((𝐴𝑉𝐴 = 𝐵) → {𝑥 ∣ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ tag 𝐶})
7 df-bj-proj 35108 . . . . 5 (𝐴 Proj ({𝐵} × tag 𝐶)) = {𝑥 ∣ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴})}
8 bj-taginv 35103 . . . . 5 𝐶 = {𝑥 ∣ {𝑥} ∈ tag 𝐶}
96, 7, 83eqtr4g 2804 . . . 4 ((𝐴𝑉𝐴 = 𝐵) → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶)
109ex 412 . . 3 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶))
11 noel 4261 . . . . 5 ¬ {𝑥} ∈ ∅
127abeq2i 2874 . . . . . 6 (𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)) ↔ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}))
13 elsni 4575 . . . . . . . 8 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
14 bj-xpima1sn 35073 . . . . . . . 8 𝐴 ∈ {𝐵} → (({𝐵} × tag 𝐶) “ {𝐴}) = ∅)
1513, 14nsyl5 159 . . . . . . 7 𝐴 = 𝐵 → (({𝐵} × tag 𝐶) “ {𝐴}) = ∅)
1615eleq2d 2824 . . . . . 6 𝐴 = 𝐵 → ({𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ∅))
1712, 16syl5bb 282 . . . . 5 𝐴 = 𝐵 → (𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)) ↔ {𝑥} ∈ ∅))
1811, 17mtbiri 326 . . . 4 𝐴 = 𝐵 → ¬ 𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)))
1918eq0rdv 4335 . . 3 𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = ∅)
20 ifval 4498 . . 3 ((𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐴 = 𝐵, 𝐶, ∅) ↔ ((𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶) ∧ (¬ 𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = ∅)))
2110, 19, 20sylanblrc 589 . 2 (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐴 = 𝐵, 𝐶, ∅))
22 eqcom 2745 . . 3 (𝐴 = 𝐵𝐵 = 𝐴)
23 ifbi 4478 . . 3 ((𝐴 = 𝐵𝐵 = 𝐴) → if(𝐴 = 𝐵, 𝐶, ∅) = if(𝐵 = 𝐴, 𝐶, ∅))
2422, 23ax-mp 5 . 2 if(𝐴 = 𝐵, 𝐶, ∅) = if(𝐵 = 𝐴, 𝐶, ∅)
2521, 24eqtrdi 2795 1 (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  c0 4253  ifcif 4456  {csn 4558   × cxp 5578  cima 5583  tag bj-ctag 35091   Proj bj-cproj 35107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-bj-sngl 35083  df-bj-tag 35092  df-bj-proj 35108
This theorem is referenced by:  bj-pr1val  35121  bj-pr2val  35135
  Copyright terms: Public domain W3C validator