| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iindif1 | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| iindif1 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.27zv 4506 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶))) | |
| 2 | eldif 3961 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
| 3 | 2 | ralbii 3093 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
| 4 | eliin 4996 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 5 | 4 | elv 3485 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| 6 | 5 | anbi1i 624 | . . . 4 ⊢ ((𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
| 7 | 1, 3, 6 | 3bitr4g 314 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶))) |
| 8 | eliin 4996 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶))) | |
| 9 | 8 | elv 3485 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
| 10 | eldif 3961 | . . 3 ⊢ (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
| 11 | 7, 9, 10 | 3bitr4g 314 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶))) |
| 12 | 11 | eqrdv 2735 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 Vcvv 3480 ∖ cdif 3948 ∅c0 4333 ∩ ciin 4992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-v 3482 df-dif 3954 df-nul 4334 df-iin 4994 |
| This theorem is referenced by: subdrgint 20804 |
| Copyright terms: Public domain | W3C validator |