MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif1 Structured version   Visualization version   GIF version

Theorem iindif1 5004
Description: Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Assertion
Ref Expression
iindif1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iindif1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.27zv 4436 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶)))
2 eldif 3897 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
32ralbii 3092 . . . 4 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
4 eliin 4929 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
54elv 3438 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
65anbi1i 624 . . . 4 ((𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶))
71, 3, 63bitr4g 314 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶)))
8 eliin 4929 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
98elv 3438 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
10 eldif 3897 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶))
117, 9, 103bitr4g 314 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶)))
1211eqrdv 2736 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  c0 4256   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-v 3434  df-dif 3890  df-nul 4257  df-iin 4927
This theorem is referenced by:  subdrgint  20071
  Copyright terms: Public domain W3C validator