MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iindif1 Structured version   Visualization version   GIF version

Theorem iindif1 5075
Description: Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Assertion
Ref Expression
iindif1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iindif1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.27zv 4506 . . . 4 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶)))
2 eldif 3961 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝐶))
32ralbii 3093 . . . 4 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵 ∧ ¬ 𝑦𝐶))
4 eliin 4996 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
54elv 3485 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
65anbi1i 624 . . . 4 ((𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ¬ 𝑦𝐶))
71, 3, 63bitr4g 314 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶)))
8 eliin 4996 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
98elv 3485 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
10 eldif 3961 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ (𝑦 𝑥𝐴 𝐵 ∧ ¬ 𝑦𝐶))
117, 9, 103bitr4g 314 . 2 (𝐴 ≠ ∅ → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ ( 𝑥𝐴 𝐵𝐶)))
1211eqrdv 2735 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  c0 4333   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-v 3482  df-dif 3954  df-nul 4334  df-iin 4994
This theorem is referenced by:  subdrgint  20804
  Copyright terms: Public domain W3C validator