Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iindif1 | Structured version Visualization version GIF version |
Description: Indexed intersection of class difference with the subtrahend held constant. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
iindif1 | ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.27zv 4433 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶))) | |
2 | eldif 3893 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
3 | 2 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
4 | eliin 4926 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
5 | 4 | elv 3428 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
6 | 5 | anbi1i 623 | . . . 4 ⊢ ((𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
7 | 1, 3, 6 | 3bitr4g 313 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶))) |
8 | eliin 4926 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶))) | |
9 | 8 | elv 3428 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) |
10 | eldif 3893 | . . 3 ⊢ (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
11 | 7, 9, 10 | 3bitr4g 313 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶))) |
12 | 11 | eqrdv 2736 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ∅c0 4253 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-dif 3886 df-nul 4254 df-iin 4924 |
This theorem is referenced by: subdrgint 19986 |
Copyright terms: Public domain | W3C validator |