MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdrgint Structured version   Visualization version   GIF version

Theorem subdrgint 20719
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypotheses
Ref Expression
subdrgint.1 𝐿 = (𝑅s 𝑆)
subdrgint.2 (𝜑𝑅 ∈ DivRing)
subdrgint.3 (𝜑𝑆 ⊆ (SubRing‘𝑅))
subdrgint.4 (𝜑𝑆 ≠ ∅)
subdrgint.5 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
Assertion
Ref Expression
subdrgint (𝜑𝐿 ∈ DivRing)
Distinct variable groups:   𝐿,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem subdrgint
StepHypRef Expression
1 subdrgint.3 . . . 4 (𝜑𝑆 ⊆ (SubRing‘𝑅))
2 subdrgint.4 . . . 4 (𝜑𝑆 ≠ ∅)
3 subrgint 20511 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
41, 2, 3syl2anc 584 . . 3 (𝜑 𝑆 ∈ (SubRing‘𝑅))
5 subdrgint.1 . . . 4 𝐿 = (𝑅s 𝑆)
65subrgring 20490 . . 3 ( 𝑆 ∈ (SubRing‘𝑅) → 𝐿 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐿 ∈ Ring)
85fveq2i 6864 . . . 4 (mulGrp‘𝐿) = (mulGrp‘(𝑅s 𝑆))
98oveq1i 7400 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
10 subdrgint.2 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
11 eqid 2730 . . . . . . . 8 (𝑅s 𝑆) = (𝑅s 𝑆)
12 eqid 2730 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1311, 12mgpress 20066 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1410, 4, 13syl2anc 584 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1514oveq1d 7405 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
16 difssd 4103 . . . . . . 7 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ (Base‘𝐿))
17 eqid 2730 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 20488 . . . . . . . 8 ( 𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
195, 17ressbas2 17215 . . . . . . . 8 ( 𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝐿))
204, 18, 193syl 18 . . . . . . 7 (𝜑 𝑆 = (Base‘𝐿))
2116, 20sseqtrrd 3987 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆)
22 ressabs 17225 . . . . . 6 (( 𝑆 ∈ (SubRing‘𝑅) ∧ ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆) → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
234, 21, 22syl2anc 584 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
2415, 23eqtr3d 2767 . . . 4 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
25 intiin 5026 . . . . . . . 8 𝑆 = 𝑠𝑆 𝑠
2620, 25eqtr3di 2780 . . . . . . 7 (𝜑 → (Base‘𝐿) = 𝑠𝑆 𝑠)
2726difeq1d 4091 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
2827oveq2d 7406 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
29 vex 3454 . . . . . . . . . 10 𝑠 ∈ V
3029difexi 5288 . . . . . . . . 9 (𝑠 ∖ {(0g𝐿)}) ∈ V
3130dfiin3 5937 . . . . . . . 8 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
32 iindif1 5042 . . . . . . . . 9 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
332, 32syl 17 . . . . . . . 8 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3431, 33eqtr3id 2779 . . . . . . 7 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3534oveq2d 7406 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
36 difss 4102 . . . . . . . . . 10 ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅)
37 eqid 2730 . . . . . . . . . . 11 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
3812, 17mgpbas 20061 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3937, 38ressbas2 17215 . . . . . . . . . 10 (((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅) → ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
4036, 39ax-mp 5 . . . . . . . . 9 ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
4140fvexi 6875 . . . . . . . 8 ((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V
42 iinssiun 4972 . . . . . . . . . . 11 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
432, 42syl 17 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
44 subrgsubg 20493 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
4544ssriv 3953 . . . . . . . . . . . . . . . . . 18 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
461, 45sstrdi 3962 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ⊆ (SubGrp‘𝑅))
47 subgint 19089 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
4846, 2, 47syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 𝑆 ∈ (SubGrp‘𝑅))
49 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
505, 49subg0 19071 . . . . . . . . . . . . . . . 16 ( 𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐿))
5148, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝑅) = (0g𝐿))
5251adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → (0g𝑅) = (0g𝐿))
5352sneqd 4604 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g𝐿)})
5453difeq2d 4092 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝐿)}))
551sselda 3949 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → 𝑠 ∈ (SubRing‘𝑅))
5617subrgss 20488 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ⊆ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠 ⊆ (Base‘𝑅))
5857ssdifd 4111 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
5954, 58eqsstrrd 3985 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6059iunssd 5017 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6143, 60sstrd 3960 . . . . . . . . 9 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6231, 61eqsstrrid 3989 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
63 ressabs 17225 . . . . . . . 8 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6441, 62, 63sylancr 587 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6517, 49, 37drngmgp 20661 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6610, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6766adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6859, 40sseqtrdi 3990 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
69 ressabs 17225 . . . . . . . . . . . . . 14 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7041, 59, 69sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
71 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑅s 𝑠) = (𝑅s 𝑠)
7271, 12mgpress 20066 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7310, 72sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7454eqcomd 2736 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) = (𝑠 ∖ {(0g𝑅)}))
7573, 74oveq12d 7408 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})))
76 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → 𝑠𝑆)
77 difssd 4103 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠)
78 ressabs 17225 . . . . . . . . . . . . . . . 16 ((𝑠𝑆 ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7976, 77, 78syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8075, 79eqtr3d 2767 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8171, 17ressbas2 17215 . . . . . . . . . . . . . . . . . 18 (𝑠 ⊆ (Base‘𝑅) → 𝑠 = (Base‘(𝑅s 𝑠)))
8255, 56, 813syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → 𝑠 = (Base‘(𝑅s 𝑠)))
8371, 49subrg0 20495 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8455, 83syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠𝑆) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8584sneqd 4604 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g‘(𝑅s 𝑠))})
8682, 85difeq12d 4093 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
8786oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})))
88 subdrgint.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
89 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘(𝑅s 𝑠)) = (Base‘(𝑅s 𝑠))
90 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅s 𝑠)) = (0g‘(𝑅s 𝑠))
91 eqid 2730 . . . . . . . . . . . . . . . . 17 ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
9289, 90, 91drngmgp 20661 . . . . . . . . . . . . . . . 16 ((𝑅s 𝑠) ∈ DivRing → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9388, 92syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9487, 93eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) ∈ Grp)
9580, 94eqeltrrd 2830 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
9670, 95eqeltrd 2829 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
97 eqid 2730 . . . . . . . . . . . . 13 (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
9897issubg 19065 . . . . . . . . . . . 12 ((𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ↔ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp))
9967, 68, 96, 98syl3anbrc 1344 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
10099ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
101 eqid 2730 . . . . . . . . . . 11 (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
102101rnmptss 7098 . . . . . . . . . 10 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
103100, 102syl 17 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
104 dmmptg 6218 . . . . . . . . . . . . 13 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ V → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
105 difexg 5287 . . . . . . . . . . . . 13 (𝑠𝑆 → (𝑠 ∖ {(0g𝐿)}) ∈ V)
106104, 105mprg 3051 . . . . . . . . . . . 12 dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆
107106a1i 11 . . . . . . . . . . 11 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
108107, 2eqnetrd 2993 . . . . . . . . . 10 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
109 dm0rn0 5891 . . . . . . . . . . 11 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅)
110109necon3bii 2978 . . . . . . . . . 10 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
111108, 110sylib 218 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
112 subgint 19089 . . . . . . . . 9 ((ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
113103, 111, 112syl2anc 584 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
114 eqid 2730 . . . . . . . . 9 (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})))
115114subggrp 19068 . . . . . . . 8 ( ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
116113, 115syl 17 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11764, 116eqeltrrd 2830 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11835, 117eqeltrrd 2830 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})) ∈ Grp)
11928, 118eqeltrd 2829 . . . 4 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
12024, 119eqeltrd 2829 . . 3 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
1219, 120eqeltrid 2833 . 2 (𝜑 → ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
122 eqid 2730 . . 3 (Base‘𝐿) = (Base‘𝐿)
123 eqid 2730 . . 3 (0g𝐿) = (0g𝐿)
124 eqid 2730 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
125122, 123, 124isdrng2 20659 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp))
1267, 121, 125sylanbrc 583 1 (𝜑𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  wss 3917  c0 4299  {csn 4592   cint 4913   ciun 4958   ciin 4959  cmpt 5191  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  0gc0g 17409  Grpcgrp 18872  SubGrpcsubg 19059  mulGrpcmgp 20056  Ringcrg 20149  SubRingcsubrg 20485  DivRingcdr 20645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647
This theorem is referenced by:  sdrgint  20720  primefld  20721  fldgensdrg  33271
  Copyright terms: Public domain W3C validator