MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdrgint Structured version   Visualization version   GIF version

Theorem subdrgint 19986
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypotheses
Ref Expression
subdrgint.1 𝐿 = (𝑅s 𝑆)
subdrgint.2 (𝜑𝑅 ∈ DivRing)
subdrgint.3 (𝜑𝑆 ⊆ (SubRing‘𝑅))
subdrgint.4 (𝜑𝑆 ≠ ∅)
subdrgint.5 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
Assertion
Ref Expression
subdrgint (𝜑𝐿 ∈ DivRing)
Distinct variable groups:   𝐿,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem subdrgint
StepHypRef Expression
1 subdrgint.3 . . . 4 (𝜑𝑆 ⊆ (SubRing‘𝑅))
2 subdrgint.4 . . . 4 (𝜑𝑆 ≠ ∅)
3 subrgint 19961 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
41, 2, 3syl2anc 583 . . 3 (𝜑 𝑆 ∈ (SubRing‘𝑅))
5 subdrgint.1 . . . 4 𝐿 = (𝑅s 𝑆)
65subrgring 19942 . . 3 ( 𝑆 ∈ (SubRing‘𝑅) → 𝐿 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐿 ∈ Ring)
85fveq2i 6759 . . . 4 (mulGrp‘𝐿) = (mulGrp‘(𝑅s 𝑆))
98oveq1i 7265 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
10 subdrgint.2 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
11 eqid 2738 . . . . . . . 8 (𝑅s 𝑆) = (𝑅s 𝑆)
12 eqid 2738 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1311, 12mgpress 19650 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1410, 4, 13syl2anc 583 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1514oveq1d 7270 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
16 difssd 4063 . . . . . . 7 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ (Base‘𝐿))
17 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 19940 . . . . . . . 8 ( 𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
195, 17ressbas2 16875 . . . . . . . 8 ( 𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝐿))
204, 18, 193syl 18 . . . . . . 7 (𝜑 𝑆 = (Base‘𝐿))
2116, 20sseqtrrd 3958 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆)
22 ressabs 16885 . . . . . 6 (( 𝑆 ∈ (SubRing‘𝑅) ∧ ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆) → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
234, 21, 22syl2anc 583 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
2415, 23eqtr3d 2780 . . . 4 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
25 intiin 4985 . . . . . . . 8 𝑆 = 𝑠𝑆 𝑠
2620, 25eqtr3di 2794 . . . . . . 7 (𝜑 → (Base‘𝐿) = 𝑠𝑆 𝑠)
2726difeq1d 4052 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
2827oveq2d 7271 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
29 vex 3426 . . . . . . . . . 10 𝑠 ∈ V
3029difexi 5247 . . . . . . . . 9 (𝑠 ∖ {(0g𝐿)}) ∈ V
3130dfiin3 5865 . . . . . . . 8 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
32 iindif1 5000 . . . . . . . . 9 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
332, 32syl 17 . . . . . . . 8 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3431, 33eqtr3id 2793 . . . . . . 7 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3534oveq2d 7271 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
36 difss 4062 . . . . . . . . . 10 ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅)
37 eqid 2738 . . . . . . . . . . 11 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
3812, 17mgpbas 19641 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3937, 38ressbas2 16875 . . . . . . . . . 10 (((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅) → ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
4036, 39ax-mp 5 . . . . . . . . 9 ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
4140fvexi 6770 . . . . . . . 8 ((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V
42 iinssiun 4934 . . . . . . . . . . 11 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
432, 42syl 17 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
44 subrgsubg 19945 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
4544ssriv 3921 . . . . . . . . . . . . . . . . . 18 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
461, 45sstrdi 3929 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ⊆ (SubGrp‘𝑅))
47 subgint 18694 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
4846, 2, 47syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 𝑆 ∈ (SubGrp‘𝑅))
49 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
505, 49subg0 18676 . . . . . . . . . . . . . . . 16 ( 𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐿))
5148, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝑅) = (0g𝐿))
5251adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → (0g𝑅) = (0g𝐿))
5352sneqd 4570 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g𝐿)})
5453difeq2d 4053 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝐿)}))
551sselda 3917 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → 𝑠 ∈ (SubRing‘𝑅))
5617subrgss 19940 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ⊆ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠 ⊆ (Base‘𝑅))
5857ssdifd 4071 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
5954, 58eqsstrrd 3956 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6059iunssd 4976 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6143, 60sstrd 3927 . . . . . . . . 9 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6231, 61eqsstrrid 3966 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
63 ressabs 16885 . . . . . . . 8 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6441, 62, 63sylancr 586 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6517, 49, 37drngmgp 19918 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6610, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6766adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6859, 40sseqtrdi 3967 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
69 ressabs 16885 . . . . . . . . . . . . . 14 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7041, 59, 69sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
71 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑅s 𝑠) = (𝑅s 𝑠)
7271, 12mgpress 19650 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7310, 72sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7454eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) = (𝑠 ∖ {(0g𝑅)}))
7573, 74oveq12d 7273 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})))
76 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → 𝑠𝑆)
77 difssd 4063 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠)
78 ressabs 16885 . . . . . . . . . . . . . . . 16 ((𝑠𝑆 ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7976, 77, 78syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8075, 79eqtr3d 2780 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8171, 17ressbas2 16875 . . . . . . . . . . . . . . . . . 18 (𝑠 ⊆ (Base‘𝑅) → 𝑠 = (Base‘(𝑅s 𝑠)))
8255, 56, 813syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → 𝑠 = (Base‘(𝑅s 𝑠)))
8371, 49subrg0 19946 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8455, 83syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠𝑆) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8584sneqd 4570 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g‘(𝑅s 𝑠))})
8682, 85difeq12d 4054 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
8786oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})))
88 subdrgint.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
89 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘(𝑅s 𝑠)) = (Base‘(𝑅s 𝑠))
90 eqid 2738 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅s 𝑠)) = (0g‘(𝑅s 𝑠))
91 eqid 2738 . . . . . . . . . . . . . . . . 17 ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
9289, 90, 91drngmgp 19918 . . . . . . . . . . . . . . . 16 ((𝑅s 𝑠) ∈ DivRing → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9388, 92syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9487, 93eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) ∈ Grp)
9580, 94eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
9670, 95eqeltrd 2839 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
97 eqid 2738 . . . . . . . . . . . . 13 (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
9897issubg 18670 . . . . . . . . . . . 12 ((𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ↔ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp))
9967, 68, 96, 98syl3anbrc 1341 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
10099ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
101 eqid 2738 . . . . . . . . . . 11 (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
102101rnmptss 6978 . . . . . . . . . 10 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
103100, 102syl 17 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
104 dmmptg 6134 . . . . . . . . . . . . 13 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ V → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
105 difexg 5246 . . . . . . . . . . . . 13 (𝑠𝑆 → (𝑠 ∖ {(0g𝐿)}) ∈ V)
106104, 105mprg 3077 . . . . . . . . . . . 12 dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆
107106a1i 11 . . . . . . . . . . 11 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
108107, 2eqnetrd 3010 . . . . . . . . . 10 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
109 dm0rn0 5823 . . . . . . . . . . 11 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅)
110109necon3bii 2995 . . . . . . . . . 10 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
111108, 110sylib 217 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
112 subgint 18694 . . . . . . . . 9 ((ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
113103, 111, 112syl2anc 583 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
114 eqid 2738 . . . . . . . . 9 (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})))
115114subggrp 18673 . . . . . . . 8 ( ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
116113, 115syl 17 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11764, 116eqeltrrd 2840 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11835, 117eqeltrrd 2840 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})) ∈ Grp)
11928, 118eqeltrd 2839 . . . 4 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
12024, 119eqeltrd 2839 . . 3 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
1219, 120eqeltrid 2843 . 2 (𝜑 → ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
122 eqid 2738 . . 3 (Base‘𝐿) = (Base‘𝐿)
123 eqid 2738 . . 3 (0g𝐿) = (0g𝐿)
124 eqid 2738 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
125122, 123, 124isdrng2 19916 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp))
1267, 121, 125sylanbrc 582 1 (𝜑𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  wss 3883  c0 4253  {csn 4558   cint 4876   ciun 4921   ciin 4922  cmpt 5153  dom cdm 5580  ran crn 5581  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  0gc0g 17067  Grpcgrp 18492  SubGrpcsubg 18664  mulGrpcmgp 19635  Ringcrg 19698  DivRingcdr 19906  SubRingcsubrg 19935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937
This theorem is referenced by:  sdrgint  19987  primefld  19988
  Copyright terms: Public domain W3C validator