MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdrgint Structured version   Visualization version   GIF version

Theorem subdrgint 20313
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypotheses
Ref Expression
subdrgint.1 𝐿 = (𝑅s 𝑆)
subdrgint.2 (𝜑𝑅 ∈ DivRing)
subdrgint.3 (𝜑𝑆 ⊆ (SubRing‘𝑅))
subdrgint.4 (𝜑𝑆 ≠ ∅)
subdrgint.5 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
Assertion
Ref Expression
subdrgint (𝜑𝐿 ∈ DivRing)
Distinct variable groups:   𝐿,𝑠   𝑅,𝑠   𝑆,𝑠   𝜑,𝑠

Proof of Theorem subdrgint
StepHypRef Expression
1 subdrgint.3 . . . 4 (𝜑𝑆 ⊆ (SubRing‘𝑅))
2 subdrgint.4 . . . 4 (𝜑𝑆 ≠ ∅)
3 subrgint 20287 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
41, 2, 3syl2anc 585 . . 3 (𝜑 𝑆 ∈ (SubRing‘𝑅))
5 subdrgint.1 . . . 4 𝐿 = (𝑅s 𝑆)
65subrgring 20267 . . 3 ( 𝑆 ∈ (SubRing‘𝑅) → 𝐿 ∈ Ring)
74, 6syl 17 . 2 (𝜑𝐿 ∈ Ring)
85fveq2i 6849 . . . 4 (mulGrp‘𝐿) = (mulGrp‘(𝑅s 𝑆))
98oveq1i 7371 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
10 subdrgint.2 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
11 eqid 2733 . . . . . . . 8 (𝑅s 𝑆) = (𝑅s 𝑆)
12 eqid 2733 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1311, 12mgpress 19919 . . . . . . 7 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1410, 4, 13syl2anc 585 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s 𝑆) = (mulGrp‘(𝑅s 𝑆)))
1514oveq1d 7376 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
16 difssd 4096 . . . . . . 7 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ (Base‘𝐿))
17 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1817subrgss 20265 . . . . . . . 8 ( 𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
195, 17ressbas2 17128 . . . . . . . 8 ( 𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘𝐿))
204, 18, 193syl 18 . . . . . . 7 (𝜑 𝑆 = (Base‘𝐿))
2116, 20sseqtrrd 3989 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆)
22 ressabs 17138 . . . . . 6 (( 𝑆 ∈ (SubRing‘𝑅) ∧ ((Base‘𝐿) ∖ {(0g𝐿)}) ⊆ 𝑆) → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
234, 21, 22syl2anc 585 . . . . 5 (𝜑 → (((mulGrp‘𝑅) ↾s 𝑆) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
2415, 23eqtr3d 2775 . . . 4 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})))
25 intiin 5023 . . . . . . . 8 𝑆 = 𝑠𝑆 𝑠
2620, 25eqtr3di 2788 . . . . . . 7 (𝜑 → (Base‘𝐿) = 𝑠𝑆 𝑠)
2726difeq1d 4085 . . . . . 6 (𝜑 → ((Base‘𝐿) ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
2827oveq2d 7377 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
29 vex 3451 . . . . . . . . . 10 𝑠 ∈ V
3029difexi 5289 . . . . . . . . 9 (𝑠 ∖ {(0g𝐿)}) ∈ V
3130dfiin3 5926 . . . . . . . 8 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
32 iindif1 5039 . . . . . . . . 9 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
332, 32syl 17 . . . . . . . 8 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3431, 33eqtr3id 2787 . . . . . . 7 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)}))
3534oveq2d 7377 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})))
36 difss 4095 . . . . . . . . . 10 ((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅)
37 eqid 2733 . . . . . . . . . . 11 ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))
3812, 17mgpbas 19910 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3937, 38ressbas2 17128 . . . . . . . . . 10 (((Base‘𝑅) ∖ {(0g𝑅)}) ⊆ (Base‘𝑅) → ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
4036, 39ax-mp 5 . . . . . . . . 9 ((Base‘𝑅) ∖ {(0g𝑅)}) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
4140fvexi 6860 . . . . . . . 8 ((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V
42 iinssiun 4971 . . . . . . . . . . 11 (𝑆 ≠ ∅ → 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
432, 42syl 17 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}))
44 subrgsubg 20270 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
4544ssriv 3952 . . . . . . . . . . . . . . . . . 18 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
461, 45sstrdi 3960 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ⊆ (SubGrp‘𝑅))
47 subgint 18960 . . . . . . . . . . . . . . . . 17 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
4846, 2, 47syl2anc 585 . . . . . . . . . . . . . . . 16 (𝜑 𝑆 ∈ (SubGrp‘𝑅))
49 eqid 2733 . . . . . . . . . . . . . . . . 17 (0g𝑅) = (0g𝑅)
505, 49subg0 18942 . . . . . . . . . . . . . . . 16 ( 𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) = (0g𝐿))
5148, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝑅) = (0g𝐿))
5251adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → (0g𝑅) = (0g𝐿))
5352sneqd 4602 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g𝐿)})
5453difeq2d 4086 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = (𝑠 ∖ {(0g𝐿)}))
551sselda 3948 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → 𝑠 ∈ (SubRing‘𝑅))
5617subrgss 20265 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ⊆ (Base‘𝑅))
5755, 56syl 17 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → 𝑠 ⊆ (Base‘𝑅))
5857ssdifd 4104 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
5954, 58eqsstrrd 3987 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6059iunssd 5014 . . . . . . . . . 10 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6143, 60sstrd 3958 . . . . . . . . 9 (𝜑 𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6231, 61eqsstrrid 3997 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
63 ressabs 17138 . . . . . . . 8 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6441, 62, 63sylancr 588 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))))
6517, 49, 37drngmgp 20234 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6610, 65syl 17 . . . . . . . . . . . . 13 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6766adantr 482 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp)
6859, 40sseqtrdi 3998 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
69 ressabs 17138 . . . . . . . . . . . . . 14 ((((Base‘𝑅) ∖ {(0g𝑅)}) ∈ V ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)})) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7041, 59, 69sylancr 588 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
71 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑅s 𝑠) = (𝑅s 𝑠)
7271, 12mgpress 19919 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ 𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7310, 72sylan 581 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s 𝑠) = (mulGrp‘(𝑅s 𝑠)))
7454eqcomd 2739 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) = (𝑠 ∖ {(0g𝑅)}))
7573, 74oveq12d 7379 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})))
76 simpr 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → 𝑠𝑆)
77 difssd 4096 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠)
78 ressabs 17138 . . . . . . . . . . . . . . . 16 ((𝑠𝑆 ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ 𝑠) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
7976, 77, 78syl2anc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s 𝑠) ↾s (𝑠 ∖ {(0g𝐿)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8075, 79eqtr3d 2775 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})))
8171, 17ressbas2 17128 . . . . . . . . . . . . . . . . . 18 (𝑠 ⊆ (Base‘𝑅) → 𝑠 = (Base‘(𝑅s 𝑠)))
8255, 56, 813syl 18 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → 𝑠 = (Base‘(𝑅s 𝑠)))
8371, 49subrg0 20271 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8455, 83syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠𝑆) → (0g𝑅) = (0g‘(𝑅s 𝑠)))
8584sneqd 4602 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠𝑆) → {(0g𝑅)} = {(0g‘(𝑅s 𝑠))})
8682, 85difeq12d 4087 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝑅)}) = ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
8786oveq2d 7377 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})))
88 subdrgint.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
89 eqid 2733 . . . . . . . . . . . . . . . . 17 (Base‘(𝑅s 𝑠)) = (Base‘(𝑅s 𝑠))
90 eqid 2733 . . . . . . . . . . . . . . . . 17 (0g‘(𝑅s 𝑠)) = (0g‘(𝑅s 𝑠))
91 eqid 2733 . . . . . . . . . . . . . . . . 17 ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) = ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))}))
9289, 90, 91drngmgp 20234 . . . . . . . . . . . . . . . 16 ((𝑅s 𝑠) ∈ DivRing → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9388, 92syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s ((Base‘(𝑅s 𝑠)) ∖ {(0g‘(𝑅s 𝑠))})) ∈ Grp)
9487, 93eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑠𝑆) → ((mulGrp‘(𝑅s 𝑠)) ↾s (𝑠 ∖ {(0g𝑅)})) ∈ Grp)
9580, 94eqeltrrd 2835 . . . . . . . . . . . . 13 ((𝜑𝑠𝑆) → ((mulGrp‘𝑅) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
9670, 95eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp)
97 eqid 2733 . . . . . . . . . . . . 13 (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) = (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})))
9897issubg 18936 . . . . . . . . . . . 12 ((𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ↔ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ∈ Grp ∧ (𝑠 ∖ {(0g𝐿)}) ⊆ (Base‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s (𝑠 ∖ {(0g𝐿)})) ∈ Grp))
9967, 68, 96, 98syl3anbrc 1344 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
10099ralrimiva 3140 . . . . . . . . . 10 (𝜑 → ∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
101 eqid 2733 . . . . . . . . . . 11 (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))
102101rnmptss 7074 . . . . . . . . . 10 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
103100, 102syl 17 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
104 dmmptg 6198 . . . . . . . . . . . . 13 (∀𝑠𝑆 (𝑠 ∖ {(0g𝐿)}) ∈ V → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
105 difexg 5288 . . . . . . . . . . . . 13 (𝑠𝑆 → (𝑠 ∖ {(0g𝐿)}) ∈ V)
106104, 105mprg 3067 . . . . . . . . . . . 12 dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆
107106a1i 11 . . . . . . . . . . 11 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = 𝑆)
108107, 2eqnetrd 3008 . . . . . . . . . 10 (𝜑 → dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
109 dm0rn0 5884 . . . . . . . . . . 11 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) = ∅)
110109necon3bii 2993 . . . . . . . . . 10 (dom (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅ ↔ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
111108, 110sylib 217 . . . . . . . . 9 (𝜑 → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅)
112 subgint 18960 . . . . . . . . 9 ((ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ⊆ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) ∧ ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ≠ ∅) → ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
113103, 111, 112syl2anc 585 . . . . . . . 8 (𝜑 ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))))
114 eqid 2733 . . . . . . . . 9 (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) = (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})))
115114subggrp 18939 . . . . . . . 8 ( ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)})) ∈ (SubGrp‘((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)}))) → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
116113, 115syl 17 . . . . . . 7 (𝜑 → (((mulGrp‘𝑅) ↾s ((Base‘𝑅) ∖ {(0g𝑅)})) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11764, 116eqeltrrd 2835 . . . . . 6 (𝜑 → ((mulGrp‘𝑅) ↾s ran (𝑠𝑆 ↦ (𝑠 ∖ {(0g𝐿)}))) ∈ Grp)
11835, 117eqeltrrd 2835 . . . . 5 (𝜑 → ((mulGrp‘𝑅) ↾s ( 𝑠𝑆 𝑠 ∖ {(0g𝐿)})) ∈ Grp)
11928, 118eqeltrd 2834 . . . 4 (𝜑 → ((mulGrp‘𝑅) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
12024, 119eqeltrd 2834 . . 3 (𝜑 → ((mulGrp‘(𝑅s 𝑆)) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
1219, 120eqeltrid 2838 . 2 (𝜑 → ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp)
122 eqid 2733 . . 3 (Base‘𝐿) = (Base‘𝐿)
123 eqid 2733 . . 3 (0g𝐿) = (0g𝐿)
124 eqid 2733 . . 3 ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) = ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)}))
125122, 123, 124isdrng2 20232 . 2 (𝐿 ∈ DivRing ↔ (𝐿 ∈ Ring ∧ ((mulGrp‘𝐿) ↾s ((Base‘𝐿) ∖ {(0g𝐿)})) ∈ Grp))
1267, 121, 125sylanbrc 584 1 (𝜑𝐿 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  wral 3061  Vcvv 3447  cdif 3911  wss 3914  c0 4286  {csn 4590   cint 4911   ciun 4958   ciin 4959  cmpt 5192  dom cdm 5637  ran crn 5638  cfv 6500  (class class class)co 7361  Basecbs 17091  s cress 17120  0gc0g 17329  Grpcgrp 18756  SubGrpcsubg 18930  mulGrpcmgp 19904  Ringcrg 19972  DivRingcdr 20219  SubRingcsubrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-subg 18933  df-mgp 19905  df-ur 19922  df-ring 19974  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-dvr 20120  df-drng 20221  df-subrg 20262
This theorem is referenced by:  sdrgint  20314  primefld  20315  fldgensdrg  32137
  Copyright terms: Public domain W3C validator